的数学思想方

时间:2025-12-16 12:02:59 好文 我要投稿
  • 相关推荐

的数学思想方法

的数学思想方法1

  为什么我看这个数学思维方法几页就觉得很受益,有触动。因为以前自己数学能学好感觉只是天然的选择,下意识的动作,在这里能找到原理,让你的行为有理论依据,更加明晰思维方法的重要性。自己就是受益于这些思维方法,但却没意识到,看了书才恍然大悟。很多习以为常,想当然的事情明白了这样设计的道理了。比如为啥设计小学五年级六年级。为什么三四年级、初中一年级会是槛。区别主要是抽象能力的发展不同。思维在低年级作用不是特别大。差距显现不出来。从作者的言外之意也可以看到数学思维方法是最重要的东西,但却不是课堂教学的常态目标,只是教学的附属品,渗透出来的,有人悟性高,捕获的多,发展的好。有人不敏感,攫取的少。差距就出来了。

的数学思想方法

  但不管从数学教育从业者还是我们个人的经历来说,数学思维方法都是最基本的。属于对数学本质的认识,理性的.认识。

  奥数就是为了训练数学思维方法啊。但是真假奥数不一样,假奥数就是教给你套路,记住就好。

  我自己数学学习也是原发性的。没人指导,没人培训。不过有人指点肯定会更轻松,或者能更进一步。

  我们常说语文学习,词汇是理解力的基础。在数学中,概念是数学学习的基础,是抽象思维的基础和基本形式。概念大概等同于中文阅读里的抽象词汇,不过概念是有相关系统的东西。说这个是为了说明我们平时说的打好基础再拓展。到底什么是基础。基础就是概念与概念之间的关系构成的知识结构。

  所以也自然明白日常我们说的“拓展”是什么。拓展就是在理解概念之间关系的知识结构基础上,利用思想方法、模型思想、推理思想等学习数学,解决问题。

的数学思想方法2

  中图分类号:G623.5 文献标识码:A 文章编号:1674-098X(20xx)05(c)-0118-01

  数学思想是数学内容的进一步提炼和概括,是以数学内容为载体的对数学内容的一种本质认识,它是隐性的知识。数学方法是处理问题的方式、手段,也是通过数学内容才能反映出来。数学思想方法是人们探索数学真理过程中逐步积累起来的,蕴含于概念形成、定理公式推导及运用、问题解决过程之中。掌握好数学思想方法能帮助中学生树立科学的思维方式,有利于培养正确的数学观,对培养学生的创造性思维能力具有十分重大的作用。所以教师应持之以恒将渗透数学思想方法贯穿于日常的教学活动中。该文就中学数学思想方法教学途径谈几点看法。

  1 在数学概念教学中渗透数学思想方法

  数学概念是现实世界中空间形式和数量关系及其特有的属性在思维中的反映。数学概念的形成过程实际上也是数学思想方法的形成过程。因此概念的形成、结论的推导、方法的思考、规律的揭示以及问题的发现等过程,都是向学生渗透数学思想方法的主战场。教材中的概念、定理、性质、法则、公式等都是以结论的形式呈现出来,这就需要教师吃透教材,在教学中有计划有步骤地传达不同的数学思想方法。使概念教学不是简单给出定义了事,而是让学生经历、体验概念产生的生动过程,引导学生揭示隐藏于概念之中的思维内核和思想方法。如在“指数对数函数”教学中,通过观察函数图像来确定函数的性质,揭示了数形结合思想。又如在乘方概念的教学中,通过类比的思想方法建立新旧知识之间的桥梁,可知乘方是乘法的特殊化,而乘法是加法的特殊化,减法可划归为加法。使学生对五种运算有了本质深入的理解,进一步完善了学生的知识结构体系。

  2 在解决问题时渗透数学思想方法

  我们知道问题是数学的心脏,它是数学活动得以进行的载体。而数学问题的解决过程实质上是命题的不断转换和数学思想方法反复运用的过程。所以问题解决一刻也离不开数学思想指导。教学中,教师常会碰到这样的情况:学生掌握了全部知识,也知道解决问题的方法,不过仍不知如何求解,稍微启发指点又恍然大悟,其原因:一是学生掌握的知识结构性差,组织混乱,运用的时候不得要领;二是解决问题时不能激活认知结构中的数学思想方法。因此,教师在问题解决教学中适时激活数学思想和数学方法,可有效激发他们的学习激情,变被动接受为主动参与。不断在数学思想方法指导下,弄清每个结论的因果关系,引导学生归纳得出结论。使他们感受到科学研究的曲折与艰辛,体会产生数学灵感的心理氛围,体验成功后的喜悦。如在解决“不能过河的情况下,怎样测量河流的宽度”

  这个问题中,涉及转化的.思想、方程的思想、数形结合的思想、分类讨论的思想及数学模型方法,从而使学生体会到数学思想方法的综合运用,领略到数学思想方法的魅力和应用。

  3 在总结复习中深化数学思想方法

  总结与复习是揭示知识之间的内在联系以及归纳、提炼知识中蕴含的数学思想方法的途径之一。数学思想方法蕴含于数学基础知识之中,并且零散地分布在数学知识之中,它是隐性的,抽象的。通过平时的数学思想方法的渗透教学,学生积累了许多数学思想方法,但他们对数学思想方法的认识还是较肤浅的,有的甚至是零碎的,所以在小节复习中,适时地对某种数学思想方法进行概括和强化,它的内容、规律、运用等有意识地点拨,使学生从数学思想方法的高度掌握知识的本质,逐步体会数学思想方法的精神实质。例如,函数图象变换的复习中,把简单的二次函数、反函数、正弦函数等知识通过平移、伸缩、对称变换等引导学生运用简化曲线间的关系处理求相关动点轨迹的方法,得出图象变换的一般结论,以此深化学生对图象变换的认识,提高学生解决问题的能力及观点。又如,在四边形的复习教学中,引导学生思考:某数学思想方法在什么图形进行渗透和揭示?平行四边形等图形可进行哪些数学思想方法的应用?在纵横两方面整理出数学思想方法,从而概括数学思想方法。或者经常开设专题讲座课,讲清数学思想方法形成的来龙去脉、内涵外延、作用功能等等,以上方法都可以帮助学生更好地掌握数学思想方法。

  数学教材将数学思想方法融于数学知识体系中,即使是同一种数学思想方法在不同章节中要求的层次也是不同的,教师应将这些思想由潜形态转变为显形态,搞清常用的数学思想方法通常应在哪些场合下应用,如何使用,使用时注意些什么问题等。使学生由对方法的朦胧感受、死记硬背转化为明晰的理解、掌握和灵活运用,最终完成对数学知识、数学方法的本质认识。数学思想方法教学还应与知识教学、学生认知水平相适应,结合不同的知识教学有意识地反复孕育同一个数学思想方法,不要操之过急。要采取小步走、多层次的教学方法,围绕各种思想方法的基本要求,结合学生的心理特征,有计划地开展数学思想方法的训练,同时要让学生积极参与教学过程,在教师的启发引导下逐步形成、掌握数学思想方法。

  总之,学生数学思想的形成是一个迁移默化的过程,是在多次理解和应用的基础上形成的。需要教师精心设计教学,把握好教学过程,教学要反映数学发展规律,遵循思想方法的教学原则,深入挖掘教材中的思想方法,引导学生去体会、理解、掌握,使学生学会思考、分析、解决问题,形成良好的思维品质。那么这样的数学教学就是完美的,这样的教育就是成功的。

的数学思想方法3

  [摘要]随着新一轮课程改革的开展与推进,人们越来越重视数学思想方法的渗透。本文作者结合自己的教学经验,阐述了思想方法如何渗透入初中数学教学中的一些想法。

  [关键词]初中数学;数学思想;渗透

  数学思想方法是初中数学教学的重要组成部分,是比数学知识传授更为重要的教学内容。有人把数学思想方法称之为数学教学中的一颗明珠,因为知识的作用是有限的,而方法的作用往往能够涉及整个数学领域。正是因为其有着广泛的普遍适用性,有着超越知识层面,并且能够让人们在数学探究的征途上从未知到已知的可能性,因此在新课程改革中被赋予了相当的重要性。

  事实上,20xx年新颁布的《义务教育数学课程标准》,再一次将基本思想写入其中。当然,令人注目的是我们初中数学还进一步提出了“基本数学活动经验”——其与数学思想方法也有着密切的关系。这样就将传统上的“双基”扩展为了“四基”,使得初中数学教学的内涵与外延都得到了进一步的丰富。

  初中数学思想方法概述

  随着新一轮课程改革的开展与推进,人们越来越重视数学思想方法的渗透。那么,在初中数学教学中有哪些思想方法需要我们去重视呢?

  其一是数学方法。顾名思义,这一类的思想方法与数学内容有着密切的关系,也可以认为是离开了数学知识就谈不上这些方法的运用。比如解方程中常常用到的配方法,其是通过将一元二次方程配成完全平方式,以得到一元二次方程的根的方法,其经典运用是一元二次方程求根公式的得出;再如换元法、消元法,前者是指把方程中的某个因式看成一个整体,然后用另一个变量去代替它,从而使问题得到解决。后者是指通过加减、代入等方法,使得方程中的未知数变少的方法。在复杂方程中运用这些方法可以化难为易。再如几何中的辅助线方法也是解决许多几何难题的灵丹妙药。

  其二是普遍适用性的科学方法。例如我们数学中常用的归纳法,就有完全归纳法和不完全归纳法两种,数学上的很多规律其实最初都来自于不完全归纳法,因此在探究类的知识发生过程中,都可以用不完全归纳法来进行一些规律的猜想。再如类比、反证等方法,也是初中数学常用的方法,运用这些方法的最大好处是,可以让学生领略到在初中数学中进行逻辑推理的力量与美感。根据笔者的不完全调查,学生在进行推理后如果能够成功地解决一个数学难题,其心情是十分喜悦的,而最大的感受就是通过一环套一环的推理,能够顺利地由已知抵达未知。

  其三就是我们常说的数学思想。我国当代数学教育专家郑毓信、张奠宙等人特别注重数学思想在初中教学中的渗透,多次著文要加强数学思想方法的教学。众所周知,数学思想与数学哲学有着密不可分的关系,很多数学家本身也是哲学家。因此,学好数学思想可以有效地培养哲学意识,从而让学生变得更为聪明。

  例如典型的建模思想,其是用数学的符号和语言,将遇到的问题表达成数学表达式,于是就建成了一个数学模型,再通过对模型的分析与计算得到相应的结果,并用结果来解释实际问题,并接受实际的检验。一旦学生熟悉了这种数学思想并能熟练运用,将是初中数学教学的一个重大成功。

  再如化归思想,其被认为是一种最基本的思维策略,也是一种非常基础、非常有效的数学思维方式。它是指在分析、解决数学问题时,通过思维的加工及相应的处理方法,将问题变换、转化为相对简单的问题,即哲学中以简驭繁的道理。

  初中数学教学中思想方法的渗透方法思考

  在初中数学教学中,思想方法的渗透一般可以分为两种形式:一是显性的教学方法,即向学生明确说明方法的名称,以让学生熟悉这些方法,并在以后的相关知识学习中能够熟练运用。这一思路一般运用在简单的数学思想方法中;另一个是隐性的教学方法,即在教学中只使用这种方法,但不向学生明确说明方法的名称,在后面知识的学习中有可能遇到,但总不以方法本身为目的,重点始终集中在某一个问题的解决上。

  在笔者看来,对于今天初中学生的身心发展特点而言,更多有价值的数学思想方法以渗透的方式进行教学是比较恰当的选择。作出这一判断的理由在于,十四、十五岁的初中生的智力发展落后于身体发育,还处在由形象思维向抽象思维过渡的阶段,因此相对比较抽象的数学思想方法一般并不容易从字面上给予理解,只能在运用中通过直觉思维建立一种类似于默会知识的能力。

  那具体渗透又该如何进行呢?笔者以为关键是要加强渗透意识,即在备课时就要考虑要教授的某一知识中有哪些思想方法可以对学生进行渗透,在这种思路下,数学知识就会成为数学思想方法的一个载体,通过对数学知识的'学习,让学生在收获知识的同时感受方法的运用和思想的熏陶。

  比如,在初一数学教学之时,我们可以向学生阐述数学的研究对象是数与形,在此基础上就可以渗透“数形结合”的思想。在之后的数学教学中,一旦遇到有“数”又有“形”的知识点,就要让学生在“形”中寻找“数”,在“数”中构建“形”。例如三角形知识中有三角之和为180°的关系,在直角三角形中有特殊角的三角函数值的关系,在全等三角形中有等量的关系,在全等三角形证明的过程中有很多逻辑的关系等。

  再如对学生归纳能力的培养,我们知道所谓归纳,是一种从特殊到一般的思想方法。以确定抛物线开口方向为例,如何知道二次项前的系数是正还是负,那就需要通过配方等方法来解决。确定了这一点之后,我们可用描点法在坐标上作出抛物线。一个方程及对应的图往往并不能得出相关的规律,只有不同形式是同一个结果之后,我们才可以通过不完全归纳得到抛物线的有关规律。如我们可以让学生画出下面四个方程的图象:y=x2;y=3x2—2;y=—x2;y=—2x2+1。然后去归纳得出相应的规律,如二次项前的系数为正时开口向上,为负时开口向下等。在这一过程中,教师根本不需要提出“归纳”的字眼,就是引领学生去分析、去归纳、去发现。当学生熟悉了这种方法之后,在别的知识学习过程中,他们有可能说不出归纳这一词,但一定会运用这种方法。

  渗透是初中数学教学的一种技术,甚至是艺术,因为在数学教学过程中,我们有时发现不说比说更难,但如果要说有时又会因为学生认知能力有限而说不清。因此,不说的能力更需要我们去着力培养。

  对初中数学教学中思想方法渗透的反思

  数学思想方法之于数学知识而言,犹如灵魂与躯体的关系,前者不能脱离后者而存在,但只有后者没有前者的数学教学又是空洞且不完整的。要让初中数学教学有意义,要让初中数学学习有意思,无论是对于教师还是对于学生,都必须加强数学思想方法的渗透与培养。而渗透到底该如何进行,即怎样的教学行为才算是渗透,又值得我们在实践中去尝试与反思。

  笔者以上所述,只是基于个体教学实践的一点思考,其中若有不当之处,还望得到专家、同行的指点,以使笔者和更多像笔者一样的普通数学教师能够有所受益。

的数学思想方法4

  美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。

  高考试题主要从以下几个方面对数学思想方法进行考查:

  ①常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法等;

  ②数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等;

  ③数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、归纳和演绎等;

  ④常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想等。

  数学思想方法与数学基础知识相比较,它有较高的地位和层次。数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。

  数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。

  为了帮助学生掌握解题的金钥匙,掌握解题的思想方法,先是介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想。最后谈谈解题中的`有关策略和高考中的几个热点问题,并在附录部分提供了近几年的高考试卷。

  在每节的内容中,先是对方法或者问题进行综合性的叙述,再以三种题组的形式出现。再现性题组是一组简单的选择填空题进行方法的再现,示范性题组进行详细的解答和分析,对方法和问题进行示范。巩固性题组旨在检查学习的效果,起到巩固的作用。每个题组中习题的选取,又尽量综合到代数、三角、几何几个部分重要章节的数学知识。

的数学思想方法5

  传统的数学教学历来只注重知识的传授,而忽视知识发生过程中数学思想方法的教学,这不利于进行素质教育。我认为,数学思想方法的教学和数学知识的传授是数学教学的两个重要组成部分,而数学思想方法的教学也许比知识更为重要。正如数学教育家弗利德曼所说:“在学校课程中,数学的思想方法应占有中心的地位,占有把教学大纲中所有的为数很多的概念,所有的题目和章节联结成一个统一的学科的这种核心地位。”

  现代数学教学观认为,应该着重发展学生的思维,提高数学能力。义务教育的核心则在于全面提高学生的素质。我国义务教育初中数学教学大纲中,已将数学思想方法的学习列入基础知识的范畴,提出了明确的要求,这是一项前所未有的举措,是顺乎时代潮流的重大转变。要发展学生的思维,培养数学能力,提高文化素养,就必须使学生了解数学知识形成的过程,明确其产生和发展的外部与内部的驱动力。而在数学概念的确立,数学事实的发现,数学理论的推导以及数学知识的运用中,所凝聚的思想和方法,乃是数学的精髓。它会对学生的思维及整体文化素质,产生深刻而持久的影响,使学生受益终身。

  我国义务教育数学教材,已于1993年起在全国推行,从目前的情况来看,还存在着许多急需解决的问题,其中一个重要的问题,就是如何认识数学思想方法,以及怎样进行数学思想方法的训练。数学科学的内容,包括数学知识和蕴涵于知识中的数学思想方法两个组成部分。概念、定理、公式等知识是数学的外在表现形式,而数学的思想方法则是数学发展的内在动力,把握住它就可把握数学发展的脉络。

  “方法”与“思想”之间,没有严格的界限。人们习惯上把那些具体的、操作性较强的办法称为方法,而把那些抽象的、涉及范围较广的或框架性的办法称为思想。中学数学思想方法,我们认为可以分为三种类型。一是操作性较强的方法,称之为技巧型方法。比如,换元法、待定系数法、参数法等,它们与知识并行同生,其特点是与解题紧密联系,具体而便于操作。二是逻辑型思想方法。包括类比、归纳、演绎、分析、综合、抽象、概括等。这些方法具有确定的'逻辑结构,是普遍适用的推理论证模式,需靠教师有意识、有目的地从数学内容中去挖掘,并对学生进行训练和培养。三是全局型的数学思想方法。比如,公理方法、坐标方法、模型方法等。它们较多地带有思想、观点的属性。它们揭示的是数学发展中极其普遍的想法,为数学的发展起着指引方向的作用。这些方法虽不像技巧型方法那样具体,却牵动着数学发展的全局,或为新学科的诞生起着指导作用。这三类方法相辅相成,共同促进着数学的发展。

  基于以上的认识,这三类方法的学习与掌握,无疑会促进学生思维的发展,强化学生的数学能力,并带动其整个文化素质的提高。因而,把数学思想方法的训练贯穿于中学数学教学始终是合适的,也是必要的。

  怎样进行中学数学思想方法的教学呢?我认为应该注意以下四个方面:

  一、注意发掘隐藏于知识中的思想方法。

  数学科学是知识和方法的有机结合,没有不包含数学方法的知识,也没有游离于数学知识之外的方法。而有些思想方法并不是以明显的形式呈现出来,要靠教师去发掘,从具体事例中抽象,从大量事实中概括。例如,不等式的证明,尽管具体的途径很多,但都是设法把不明显的不等式转化为明显的不等式,这一点却是共同的,即都是化归这一重要的数学思想的体现,具有普遍的指导作用。要把这些思想提炼出来,明确地告诉学生,阐明其作用,引起他们对数学思想方法的重视。

  二、突出基本数学思想。

  中学数学中有一些数学思想,它渗透于各类知识之中,在教学的各个阶段都起着重要的作用,我们不妨称之为基本数学思想。突出了这些基本数学思想,就相当于抓住中学数学知识的精髓。基本数学思想有哪些呢?

  1、转化的思想。

  数学问题的解决过程是一系列转化的过程。转化是化繁为简,化难为易,化未知为已知,化陌生为熟悉的有力手段,是解决问题的一种最基本的思想。中学数学中常用的化高次为低次,化多元为一元,化高维为低维等,都是转化思想的体现。在具体内容上,有加减法的转化,乘除法的转化,乘方与开方的转化,数形转化等;而添置辅助线,设辅助元,构造方程,构造不等式,构造模型等,则是实现转化的具体手段。

  2、分类讨论的思想。

  分类思想是自然科学乃至社会科学研究中的基本逻辑方法。数学中则依据数学对象属性的不同,将数学对象分为不同的种类,以便于用不同的方法去研究。从整体方面来看,把中学数学分为代数、几何(平面几何、立体几何、解析几何),然后采用不同方法进行研究,就是分类思想的体现。分类思想已渗透到中学数学的各个方面,如概念的定义,定理的证明,法则的推导等;也渗透到了问题的具体解决之中,如含有绝对值符号的代数式的处理,根式的化简,图形的讨论等,这些问题若不分类讨论,就会无从着手或顾此失彼,导致错误的发生。掌握分类思想,有助于理解知识、整理知识、消化知识和独立获取知识,使学生学会一种分析问题和处理问题的思想方法。

  3、数学结合的思想。

  “数”和“形”是数学研究中既有区别又有联系的两个对象。在数学教学中,突出数形结合思想,有利于学生从不同的侧面加深对问题的认识和理解,提供解决问题的方法,也有利于培养学生将实际问题转化为数学问题的能力。将抽象的数量关系形象化,具有直观性强,易理解、易接受的作用;将直观图形数量化,转化成数学运算,常会降低难度,并可对知识的理解达到更深刻的程度。所以数学教学中,突出数学结合的思想,不仅是提供解决问题的一种手段,而且加深了对数学实质的认识。中学代数中,正是借助数形结合的载体—数轴,介绍数与点的对应关系,相反数、绝对值的定义、有理数大小比较的法则等,大大减少了引进这些概念的难度。几何中则应用不等式、方程、函数等进行分析和论证,降低了纯几何形式论证的难度。数形结合的思想已渗透于整个中学数学的教材之中。

  三、数学思想方法教学的三个阶段。

  从认识过程的发展来看,我认为数学思想方法的教学应分为三个阶段。

  1、突出数学活动。

  “数学教学是数学活动的教学”(【苏】斯托利亚尔《数学教育学》)。只有突出数学理论的形成过程,暴露数学家的思维过程,引导学生参与数学的“发现”,学生才能获得“活”的知识。所以在数学教学中,不仅要让学生掌握方法的一招一式,更重要的是向学生展现数学思想和方法的产生、应用和发展的过程,这样才能使他们了解方法的实质。例如,证明三角形中边与角之间的不等关系,我们可以引导学生“截长补短”添置辅助线,将“不等”问题转化为“相等”问题,通过已知的关于边角相等的知识,解决未知的边角之间不等的问题。三角形内角和定理的证明,可让学生动手用纸做一个三角形,将其两个角撕下,三个角拼在一起,发现三内角之和是个平角。从而使学生发现证明的基本想法,就是将三个角移到一起,而采用作平行线这一方法,是达到目的的手段。这样教学,突出了解决问题的思想过程,有利于形成学生的能力。

  2、强调方法的提炼。

  作为教学的第二阶段,应引导学生从解决问题的技巧中,提炼出方法,进而理解方法的实质。比如,在一些问题的证明中,都用到了“截长补短”的技巧,而这一技巧的实质是将“不等”转化为“相等”,将“未知”转化为“已知”,为问题的解决铺平道路。又比如二元一次方程组的教学,在第一阶段是让学生掌握两种消元方法,第二阶段应让学生理解两种消元方法的实质是同样的,都是化二元为一元,化陌生为熟悉。

  3、加强方法的指导。

  解决问题是学生学习数学的主要方式,也是教师的重要教学手段。在教学第三阶段应突出数学方法在解题中的指导,展现数学方法的应用过程。

  四、反复再现,逐步渗透。

  数学方法固然具有普遍适用性,但数学知识则是逐步深化的,这就导致了在知识发展的各个阶段所反映出的数学方法的不同的层次性。对同一数学方法,应该注意其在不同知识阶段的再现,以加强学生对数学方法的认识。一般地,低年级介绍知识新授阶段较低层次的方法,高年级介绍知识深化阶段较高层次的方法,反复再现,逐步渗透。如换元法、配方法都曾在不同的问题的研究中和不同阶段的数学中屡次出现,但每次都有不同的应用形式,也有层次上的深浅。平时我们注意技巧方法的教学,到了一定阶段,应上升为较高层次的数学思想。再用较高层次的观点去概括知识的逻辑结构,揭示知识的内在联系,会使所掌握的知识层次更具有深度和广度,也使思维更加深刻。比如,在中学学习的多种类型方程的求解方法,是随着各阶段的知识内容进行的,最后我们可将其归结为:化超越方程为代数方程,化高次方程为低次方程,化无理方程为有理方程,化分式方程为整式方程等解方程的思路,即化陌生为熟悉,化复杂为简单,使学生更强化了这种解决问题的基本思想方法。

  数学思想方法是数学中联系各项知识的纽带,它较数学知识有更大的抽象性和概括性,只有在教学过程中长期渗透,才能收到良好的效果。因此,在课堂教学中渗透数学思想方法去指导教学,不仅可让学生获得教材以外的方法思想,而且能显现教材本身隐含的思想方法,使学生充分认识问题的本质特征,促使学生会学数学,养成用数学的意识。由此可见,这种将基本数学思想方法和知识、技能融为一体的课堂教学,能有效地为学生减负,避免后进生分化,值得人们深入地思考和实践。

  以上是我对目前初中数学教学中人们关切的数学思想方法所作的粗浅的探究,希望能引起同行们对这个课题的足够重视,以期取得进一步的研究成果。

的数学思想方法6

  一、积极研读数学教材,挖掘数学思想方法

  小学数学教师在进行备课的时候,不仅要将数学知识进行重点分析,并且还要对数学教材进行仔细钻研,创造性的将数学教材发展为挖掘数学思想方法的主要载体。在课前备课的时候,小学数学教师要多问自己几个为什么,并且将教材内容积极转变为自己的教学思想,比如在学习用数对确定位置的一课的时候,数学教材中所呈现出的都是符号化思想,数学教师要从教材出发,不被教学目标所局限,将数学思想方法进行明确,并且创造性的使用数学教材,让学生能够对数对有所认识,能够开发其数学思维。

  二、积极进行点拨,实现数学思想方法的应用

  (一)在探索知识发生中渗透数学思想方法

  一般而言,数学思想方法渗透在学生获得知识的整个过程之中,数学教师要积极引导学生对数学知识有所理解与掌握,让学生能够在观察、实验、分析中感受到知识背后所蕴含的思想内容,只有如此,才能让学生对内化知识充分掌握,才能从根本上提高其数学素养。比如在学习《重叠》一节的时候,教师可以对学生提出问题:小明在前面数是第3个人,从后面数也是第三个人,这个队伍中一共有多少人?在对学生进行引导之后,让学生根据教材中的范例画出相应的集合图,并且根据学生所绘制的集合图深入讲解重叠的意义,让整个内容渗透集合思想。这样一来,学生对知识点的渗透不仅实现了对应思想以及数学结合思想,并且数学方法中所存在的符号化思想则会进一步深化学生对重叠问题的思考与认识。

  (二)在解题思路的探讨过程中融入渗透数学思想方法

  学生作为学习的主体,在整个学习过程中,教师作为引领者要引导学生积极参与其中,对所发现的问题进行解决。其中,在小学数学学习中,解题是一项非常重要的活动形式,学生在解题的过程中,不仅是数学思想方法体验的过程,并且也是加深数学思想方法的过程。比如在学习《圆的面积计算》中,小学数学教学可以积极转化教学思想,并在将圆的面积计算公式推算出之后,指导学生对阴影部分的面积进行思考,等到学生将问题思考结束之后,让学生对解题的思路进行明确,并且利用多媒体资料将阴影部分的三角形转移到上面,在经过多媒体技术的转移之后,帮助学生寻找到解题的方法,让学生能够对转化的思想有所认识。数学是一门逻辑性比较强的学科,其学习的目的是寻找解题思想,掌握解题策略,针对于此,教师要在整个教学过程中将最具有价值的数学思想方法呈现给学生。

  (三)加强对课堂知识的回顾,将数学思想方法进行概括

  从整体角度分析,在小学数学教学中,总结是极其重要的环节,总结的作用不仅可以将知识之间的联系进行归纳,并且还能够将其中所蕴含的思想方法进行提炼,所以,对小学数学知识进行总结,能够实现对知识的`深化以及概括,是渗透数学思想方法的主要渠道。

  三、加强课后巩固练习,反思数学思想方法

  在小学数学中有意渗透不仅是学生获得思想方法的主要途径,并且也是学生在反思的过程中获取思想方法的来源。在整个教学过程中,教师要积极引导学生在学习过程中对自己的思维活动进行检查,并且对其中所存在的问题进行分析以及解决,这样一来,不仅巩固了知识技能,并且也在一定程度上渗透了数学思想方法。此外,教师在为学生作业进行检查的时候,也要对其进行点评,这样一来不仅可以让学生巩固所学到的知识,并且还能获得解题的技巧,能够帮助学生悟出其中所蕴含的数学规律以及数学思想方法。

  四、结语

  小学数学作为一门基础课程,决定了学生思维的开发,在小学数学中,渗透数学思想方法的内容非常多,本文从课前备课、课中指导到课后巩固三个方面出发,进一步分析了小学数学教学中渗透数学思想方法的策略。此外,在小学数学教学过程中,数学教师要不断努力,并且要对教学方法进行熟练掌握,指导学生进行学习与练习,只有如此,才能从根本上推动我国教育事业的可持续发展。

的数学思想方法7

  为了帮助小学数学教师转变数学教育观念,提高对数学思想方法的理解和运用水平,进而提高数学专业素养,本书主编王永春于出版了专著《小学数学与数学思想方法》,该书一经出版,便受到广大小学数学教师的欢迎,参与学习活动的老师们把自己的读书心得写出来,在教学中去实践自己的学习收获,主编王永春把这些鲜活的学习体会和宝贵的教学经验案例结集出版,形成了本书,让更多的`老师分享通俗而深刻的理论解读和接地气的实践经验。

  本书作者王永春,作为人民教育出版社小学数学编辑室主任,长期从事小学数学教材的编写工作,致力于课程、教材的研究,对小学数学思想方法有深入的思考和探索。基于对提高教育质量、落实教育目标的强烈责任感,作者撰写了系列文章,就有关数学思想方法在小学教学中的应用作了专门的论述。在此基础上,形成了本书。

  本书是《小学数学与数学思想方法》一书的读后感,是一线教师对数学思想方法的解读和教学案例的研究。因此本书的内容结构和目录与《小学数学与数学思想方法》的内容结构和目录是基本相对应的,其中第1章到第五章的目录与《小学数学与数学思想方法》相对应,第六章教学案例部分,考虑到各年级案例分布不均,没有按照册数分节,把一、二年级分为第1节,三、四年级分为第二节,五年级分为第三节,六年级分为第四节。对学生来说,数学思想方法不同于一般的概念和技能,概念与技能通常可以通过短期的训练便能掌握,而数学思想方法则需要通过教师长期的渗透和影响才能够形成。教师应在每堂课的教学中适时、适当地体现思想方法的教学目标,使学生在潜移默化中日积月累,通过提高数学素养达到学好数学的目的。

  数学思想方法不同于一般的概念和技能,后者一般通过短期的训练便能掌握,而数学思想方法需要通过在教学中长期地渗透和影响才能够形成。古语云“泰山不让土壤,故能成其大;河海不择细流,故能就其深。”教师应在每堂课的教学中适时、适当地体现思想方法的教学目标,使学生在潜移默化中日积月累,通过提高数学素养达到学好数学的目的。希望数学思想方法的教学能够像春雨一样,滋润着学生的心田。

的数学思想方法8

  摘要:在小学数学教学中合理地渗透,数学思想可以有效提高学生的学习热情,发散其数学思维,使其不仅可以掌握更多的数学知识与数学技能,而且可以掌握科学的学习方法,提升学习能力与数学素养,对学生的全面发展都有极大的推动作用。本文首先介绍了几种比较常见的数学思想方法,然后提出了在小学数学教学中合理渗透数学思想方法的策略,仅供参考。

  关键词:小学数学数学思想方法渗透策略

  数学思想方法是数学的灵魂所在,其是学生参与数学活动的一种思维方法,是解决数学问题的有效措施。因此,在小学数学教学过程中,教师要改变传统的教学模式,科学地渗透数学思想方法,帮助学生理解并合理运用数学思想方法,全面地提升学生的数学素养,提升其综合能力。

  一、常见数学思想方法介绍

  (一)转换法

  在解决数学问题时,将没有解决的数学问题转换成能够采用现有知识进行解决的问题的一种方法即为转换法。其是一种比较常见的数学思想方法。在小学数学教学,许多问题的数量关系相对非常复杂,借助于转换法能够将比较复杂并且抽象的问题逐渐转化为简单、具体的问题,如此一来就可以利用所学的知识将问题进行合理解决。

  (二)分类法

  分类法即为将某个数学问题看作是一个整体,然后按照相应的标准将其划分成若干部分,之后再对不同部分展开深入的分析,最终解决此问题。在小学数学教育教学中合理地应用分类法,可以把比较复杂的问题给予分离。如此一来,就可以使得此数学对象的有关属性的区别和联系更快地得以显示,进而帮助学生更加深入、准确地理解法则与概念等抽象、难懂的知识。例如,利用角度的大小实现对三角形的分类,就能够帮助学生更加全面、准确地掌握三角形的.本质特点。

  (三)归纳法

  所谓的归纳法即为从特殊到普遍、从部分到整体的一种推理方法。其是对特例进行深入的分析,将非本质的因素去掉,进而获得本质的特征,然后再将其进行合理的归纳、总结,变成普通对象,最终解决数学问题的一种思想方法。通常状况下,小学生往往采用的是不完全归纳法。例如,对于加法结合律的归纳总结,即为利用实践获得的,并非是普通的案例。

  二、小学数学教学中数学思想方法的渗透策略

  (一)深入研读教材内容,总结数学思想方法

  新课标中明确指出,在小学阶段,学生要学习能够适应社会生活、获得良好发展所需要的数学基础知识与技能。因此,为了充分地顺应新课标的要求,那么小学数学教师就要对课本进行深入的研读,深入理解其中与数学思想方法有关的内容。另外,在开展教学活动之前,教师要对数学教材进行深入的研读,找到其中包含的数学思想方法。例如,在人教版三年级教材中设计如下习题:一个班级共有28人,共同乘坐小船出外郊游。大船最多能够坐6个人,小船最多能够坐4个人。请同学们思考,如果使得每条船都能坐满,那么将如何租船呢?假如租1条大船和1条小船分别需要10元与8元,那么如何租船才可以更加省钱呢?教师首先要引导学生对问题的解决方法进行深入的研究与思考,然后引导学生采用穷举法获得三种解决方案,并且为学生分析最省钱的租船方案所租的小船数量也是最少的。如此一来,通过对教材的深入研读,教师就可以为学生更加合理地提炼出穷举法,使得学生能够更好地掌握数学思想方法。

  (二)科学制定教学目标,了解数学思想方法

  小学数学的教学目标即为能够帮助学生初步掌握数学思想方法。所以,教师在制定教学目标的时候,必须要充分注重“情感和价值观”、“方法和过程”、“知识和技能目标”的有机平衡。要科学制定各种教学目标,从而有效地提升教学效果。例如,在四年级下册设计的植树问题中,教师要向学生渗透化归的思想方法。通过这一章节的学习,帮助学生认识到采用思想方法模型对问题进行有效解决的高效性与便利性。

  (三)利用课堂教学,体验数学思想方法

  在小学数学教学过程中,数学思想有着隐蔽性的特点。所以,需要全面了解概念的形成、规律揭示与方法归纳等一系列的过程,教师要引导学生能够通过观察、分析与归纳等,透过表象深刻地领悟到在数学方法与概念中蕴含的笛思想。在此前提下,可以生成比较科学、完善的知识结构。由于数学思想的渗透是比较复杂,并且要经过长时间的积累,这样就要求学生能够具备良好的理解能力。所以,在渗透数学思想的过程中,教师要结合学生当前具有的数学知识与经验,进行积极的探索与体验,最终掌握其中所蕴含的数学思想。例如,在为学生讲解《平行四边形面积的计算》这一章节内容,教师就可以利用转换法对学生渗透数学思想。在简拼图形的时候,要鼓励学生进行深入的思考:请问同学们为何要沿着高对图形进行剪裁呢?为何要进行拼接?通过动手实践以后,学生就可以将平行四边形简拼成已经学过的长方形,最终掌握计算平行四边形面积的方法。

  (四)选用多种教学方法,渗透数学思想方法

  为了更有效地提升小学数学教学效果与教学质量,在实际教学中,教师就要采用更加科学、灵活多变的教学方法,进而更好地激发学生的学习热情,科学渗透数学思想方法,提高学生的学习效率与学习效果。当前,在数学教学中比较常用的教学方法主要包括问题探究法、讲授法、直观演示法以及多媒体教学法等。例如,在带领学生学习《数学广角》相关内容时,教师就要选择比较科学合理、灵活多样的教学方法,这样就可以使得学生更加容易地掌握原本枯燥、乏味的知识,掌握数学思想方法,增强学生的理解与记忆,提高学生的学习效率。

  三、结语

  总之,在小学数学教学中合理地渗透数学思想方法,可以有效提升学生的学习兴趣,培养其逻辑思维能力,提高其对问题的分析与解决能力,提升学习效率与学习效果,全面促进学生综合素质的提升。所以,在小学数学教学中,教师就要结合教学实际合理渗透数学思想方法,进而推动学生综合素质的全面提升,为社会培养出更多的优秀人才。

  参考文献:

  [1]姜丹。小学数学教学中渗透数学思想方法的实践与思考[J]。中国校外教育,20xx,(04)。

  [2]张治军。小学数学教学中渗透数学思想方法[J]。都市家教月刊,20xx,(04)。

  [3]王伟政。小学数学教学中数学思想方法的渗透实践[J]。学周刊,20xx,(25)。

的数学思想方法9

  数学思想方法比形式化的知识更重要,教师在教学过程中要引导学生领会和掌握隐含在课本数学内容背后的数学思想方法,使学生能够不断提高思维水平,优化思维品质,培养创新精神和实践能力,真正懂得数学价值,建立科学的数学观念,并形成良好的个性品质及科学世界观和方法论,最终促进学生整体素质提高。

  一、数学思想方法的基本概念

  思想是认识的高级阶段,是事物本质的、高级抽象的、概括的认识。数学思想是对数学知识的本质认识,是从某些具体的数学内容和对数学的认识过程中所提炼上升的数学观点,它在认识活动中被反复运用,带有普遍的指导意义,是建立数学体系和用数学解决问题的指导思想。数学方法是以数学为工具进行科学研究的过程中,所采用的各种方式、手段、途径等,数学方法就是提出、分析、处理和解决数学问题的概括性策略。

  数学方法的运用、实施与数学思想的概括、提炼是并行不悖的,是相互为用的,互为表里的。数学思想是数学中处理问题的基本观点,是对数学基础知识与基本方法本质的概括,是其精神实质和理论根据,是创造性地发展数学的指导方针。数学思想来源于数学基础知识与基本方法,又高于数学知识与方法,居于更高层次的地位,它指导知识与方法的运用,它能使知识向更深、更高层次发展。

  二、数学思想方法教学的意义

  1。有利于学生对数学基本概念与原理的理解

  数学思想方法是数学学科的“一般原理”,学生学习了数学思想方法就能够更好地理解和掌握数学内容,有助于学生形成优化的、关联的、动态的数学观。学生一旦具备了数学严密的逻辑思维能力,对于所修专业基础课程必须了解掌握的基本概念及相关原理就可以更好地全面分析和理解,达到事半功倍的效果。

  2。有利于学生更好地将数学和实践相结合

  数学实践能力的培养可以在数学知识学习过程中自发形成和发展,但是有意识地将数学思想和方法渗透到职业教育中的不同思维层次,沿着学生的思维轨迹因势利导,使学生克服学习中的恐惧和盲目心理,激发学习兴趣,提高自觉性,有助于学生将所学数学知识应用于实践,提高其解决问题的能力。

  3。有利于学生数学创新意识的'培养

  数学思想方法是数学知识的本质,为分析、处理和解决数学问题提供了指导方针和解题策略。学生在数学教师的引导下,通过对蕴含于其中的数学思想方法有所领悟,能激发出数学潜能,积极主动地参与到教师的全程教学中,培养独立思考,独立解决问题的能力。数学是一门思维学科,数学思想方法可以极大地锻炼学生的形象思维能力和逻辑思维能力,向问题的深度和广度发展,达到对事物全面的认识,有利于学生创新意识的培养。

  三、数学思想方法渗透的策略

  1。教师需要认真备课,充分挖掘教材中的数学思想方法

  数学教材中的概念、定理、公式等都是以结论的形式呈现出来的,即使有推导过程,学生也是重视结果而不重视过程,有公式就可以解题。故其中蕴含的思想方法要么没有在课本中体现出来,要么很容易被学生所忽略。然而,导致结论产生的思维活动、思想方法,恰恰是数学结构体系中最具价值的东西。所以,教师要刻苦钻研教材,挖掘教材中所蕴含的数学思想方法,以便在教学实践中适时渗透数学思想方法。

  2。将思想方法渗透于学生学习新知识过程中

  数学思想方法与数学知识是密切联系的统一体,没有脱离数学知识的数学思想方法,也没有不含数学思想方法的数学知识。因此,教师应在传授数学知识的同时渗透数学思想方法,这样才能使学生对所学知识有真正的理解和掌握,才能使学生真正领略到数学思想方法的真谛。数学知识的形成、发展过程,实际上也是数学思想方法的形成、发展过程。像概念的形成过程,公式、定理的推导过程,问题的发现过程,方法的思考过程,思路的探索过程,规律的揭示过程等都蕴藏着丰富的数学思想方法。因此,教师在数学教学中,不要直接给出概念的定义,而要展示概念的形成过程,揭示概念的本质;对公式、定理不过早地给结论,引导学生积极参与结论的探索、发现、推理过程,从中领悟思维过程中的数学思想方法。

  3。将数学思想方法渗透于解题思路的探索过程中

  在解题过程中教师要带领学生逐步探索数学思想方法,使学生在解题过程中充分领悟数学思想方法的重要作用和指导意义。譬如说,数形结合思想是充分利用图形直观帮助学生理解题意的重要手段,它可使抽象的内容变为具体,采用画线段图的方法帮助学生分析数量关系,从而化难为易。化归思想是解题的一种基本思想,贯穿于中学数学的整个学习过程,学生一旦形成了化归意识,就能化未知为已知,化繁为简,化特殊为一般,优化解题方法。还有归纳演绎方法也是解题时常用的一种数学思想方法,这些思想方法都可以在解题的探索过程中帮我们指明前进的方向。让学生提高数学的学习兴趣,提高学习成绩,最重要的是在这个过程中不断接触数学中深层次的内容,提高学生的数学素质。

  4。解决问题的过程中,体现数学思想方法

  解题教学过程中指导学生数学思想方法的运用是一个潜移默化的过程,必须通过学生自己反复体验和实践才能逐渐形成。因此教师要在解题教学过程中指导学生有意识地去运用数学思想方法解题。在学生的解题过程中,不同学生由于在学习过程中的理解能力不同,导致对各种思想方法的掌握程度会有非常大的差别。这样就需要教师在教学过程中要不断地进行分析和总结,注意归纳学生作业中出现的错误类型,有的放矢地进行教学;另外通过学生的错误,了解学生对于数学思想方法的理解情况,在课堂上进行细化讲解和分析,在和学生的不断互动中,在循序渐进过程中,学生逐步掌握数学的思想方法。

  5。在知识归纳总结过程中概括数学思想方法

  数学思想方法不但分散在教材中的各个知识点,而且“隐蔽”在数学知识体系中。因此,在平时教学中,要有目的、有计划地对数学思想作出归纳和总结,使学生有意识地自觉地参与数学思想的提炼与概括;尤其是学习了一章节或系统复习中,将数学思想方法概括出来,不但使学生对已学知识有统摄作用和指导意义,更能加强学生运用数学思想方法解决实际问题的意识,从而有利于强化所学知识,形成独立分析问题与解决问题的能力。概括数学思想方法一般分为两步:一是揭示数学思想内容、规律,即将数学共同具有的属性或关系抽出来;二是明确数学思想方法与知识的联系,将抽出来的共性推广到同类的全部对象上去,从而实现从个别认识到一般认识。

  结语

  数学思想方法是对数学知识发生过程的提炼、抽象、概括和升华,也是对数学规律的理性认识。它直接支配数学的实践活动,是解决数学问题的灵魂。在教学过程中要本着思想方法与教材内容、学生认知水平相适应的原则。我们要在教学中对常用、基础的数学思想方法大胆实践、坚持不懈、持之以恒,寓数学思想方法于平时的教学中,并有意识地运用一些数学思想方法去解决问题,引导学生在学习中认识一些分析问题、解决问题的数学思想方法,从反复实践、循序渐进中升华为终生受用的分析问题、解决问题的思想方法、手段。

  总之,在数学教学中,以数学思想方法的渗透为主线,有利于学生对数学知识的理解和掌握,有利于提高学生的思维品质,优化学生的思维结构。

的数学思想方法10

  读完《小学数学与数学思想方法》这本书,对数学思想方法有了更系统和更全面的认识。知道了什么是数学思想,什么是数学方法,知道了数学思想与数学方法的内在联系与区别。知道数学思想是数学方法进一步提炼和概括,数学思想的抽象概括程度要高一些,而数学方法的操作性更强一些。人们实现数学思想往往要靠一定的数学方法,而人们选择的数学方法,又要以一定的数学思想为依据。由此可见,数学思想方法是数学的灵魂,那么,要想学好数学,用好数学,就要深入到数学的“灵魂深处”。

  数学思想方法如此重要,从这本书中还知道了教师如何进行数学思想方法的教学:

  1、重视思想方法目标的落实。

  教师在备课撰写教学设计时,把数学思想方法作为与知识技能同等地位的目标呈现出来。而不是可有可无或者总是进行渗透,并利用动词进行描述和评价,使数学思想方法的教学目标落到实处。

  2、在知识形成过程中体现数学思想方法。

  现在的数学课堂教学中,很多教师精讲多练,急于把概念、公式、法则等知识传授给学生,然后按照考试的要求进行训练,轻视了知识的形成过程。这样,既浪费了时间,又没有真正培养学生的思维能力、思想方法和学习兴趣,导致很多学生害怕数学。我曾经在讲《除法的初步认识—平均分》时,通过让学生动手操作引导他们经历知识的形成过程。读过这本书才知道自己忽略了数学思想方法的渗透,在这个教学过程中,教师可以引导学生感受从直观操作的具体情境中抽象出除法概念的抽象思想,认识用除法符号表达的具有简洁性的符号化思想,体会用实物、图形帮助理解除法的具有直观性的数形结合思想,知道除法是一种重要的模型思想,体会在除法中商随着被除数、除数的变化而变化的函数思想。当学生认识了除法,在以后的学习中再通过学习有余数的除法、笔算除法等知识逐步加深对除法的理解,会更有利于分数、比、百分数等知识的学习,体会数学本质的变中有不变的思想。

  同样,在计算教学中,如果我们教师只是简单地告诉学生计算法则,让学生停留在对知识的记忆、模仿的水平上,没有真正理解其中的数学方法,即算理,就无法再计算下去了。更谈不上思想方法的提升了。这样的教与学势必将走入一条“死胡同”。培养出来的学生只能是“知识型”、记忆型“的人才,同时,也束缚了”创造型、开拓型“人才的成长。

  所以,在知识形成过程中体现数学思想方法的教学,才算是有效教学。

  3、在知识的应用过程中体现数学思想方法。

  以植树问题为例,可以封闭圆圈植树问题为核心模型,再演变出其他模型。封闭圆圈植树中的点与间隔一一对应,长度÷间隔=棵数。再根据实际情况演变出其他模型:一端栽一端不栽(长度÷间隔=棵数)、两端都栽(长度÷间隔+1=棵数)、两端都不栽(长度÷间隔-1=棵数)。充分发挥模型思想解决问题时的`作用。

  4、应在整理和复习、总复习中体现数学思想方法。

  每个单元后的整理和复习、全册书后的总复习,不是简单的复习知识、巩固技能,更是思想方法的总结和提升。当小学生进入六年级,尤其是最后的复习阶段,更应该对小学数学的知识进行系统的、结构化的梳理,在思想方法上进行提升。

  5、知道应潜移默化、明确呈现、长期坚持。

  数学教学,重要的是提高学生的思维品质。数学思想的渗透,应该是长期的,应从小学一年级开始,正如”随风潜入夜,润物细无声“。数学思想方法的教学也应该想春雨一样,不断地滋润学生的心田。

  读完这本书收获很多,对数学思想方法有了系统、全面的认识,在以后的数学思想方法教学中有了可以随时查询的资料,对于数学教学给予了更清晰、明了的指导。

的数学思想方法11

  在数学教育过程中,数学知识和数学方法是提高学生智力素质的两个重要方面,二者是相辅相成的。教学的最终目的不仅仅是知识传授,更重要的是凌驾于知识之上的方法的提炼和能力的提高,这才是学生终生发展所需要的。学生时代所学到的各种具体的数学知识踏入社会后不到几年就可能忘掉,但是那种铭刻在心的数学思想和方法会使人终生受用。因此,我们的平日教学,应该以知识为基础,重视方法的提炼与运用,避免学生对知识的死记硬背、对公式的死搬硬套,减少繁杂的机械计算和过难的几何论证。数形结合思想、分类讨论思想、转化思想、建模思想、类比思想、函数思想等是初中数学学习中的重要思想。我们教学中有意识地培养学生这些思想意识,不仅有利于培养学生的数学素养,而且将为学生的后续发展提供动力。

  比如:配方法是一种重要的数学方法,是初中数学解决二次方程和二次函数问题不可缺少的工具,配方法最终所蕴涵的将一元二次方程转化为两个一元一次方程的转化的思想,就是一种常用而又非常重要的数学思想。平时教学中,部分教师往往忽视了这种方法的教学,学生更是追求机械的套用公式,不利于对数学方法的真正理解。总之,数学思想方法是数学的精髓,在教学过程中渗透数学思想方法,能提高教学效果,提高学生的数学素养。

  既然数学思想方法是学生形成良好认知结构的纽带,是知识转化为能力的桥梁,是培养学生良好的数学观念和创新思维的载体,那么在教学时我们应怎样将数学思想方法渗透其中?我觉得应该做好以下几个方面:

  一、在教学过程中,一方面教师应适时渗透数学思想方法;另一方面要为学生搭建平台并提供充足的时间和空间去探究问题和知识中蕴涵的数学思想方法,并进行创造性的应用。

  要巧妙运用数学思想理解数学概念的内容,培养学生准确理解概念的能力。在讲解概念时,可结合图形,化抽象为具体,利用数形结合加深理解。比如:利用数轴讲解有理数绝对值的概念,这样一来,学生既学习了绝对值的概念,同时又渗透了数形结合的思想方法。

  数学知识的学习要经过听讲、做练习、复习等过程才能掌握与巩固。数学思想方法的形成同样要有一个循序渐进的过程并经过反复训练才能使学生真正领悟。也只有经过一个反复训练、不断完善的过程才能使学生形成直觉的运用数学思想方法的意识,建立起学生自我的“数学思想方法系统”。

  比如:在定理、公式的教学中,教师要为学生搭建平台并提供充足的时间和空间,不应该怕学生“浪费”时间而过早地给出结论,而是引导学生参与探索、发现、研究结论的形成过程及应用的条件,领悟它的知识关系,从而培养学生从特殊到一般、类比、化归的数学思想。

  二、在问题探索、解决过程中教师应适时揭示数学思想方法,提高学生的数学素养和能力;同时关注学生思维方法的形成过程和学生学习方式的转变,使数学思想方法在平日教与学中不断积淀,形成一种综合素质。

  在解决问题的过程中,教师应把最大的教学精力花在引导学生在化归思想的指导下合理联想,调用一定的数学思想方法,加工处理题设条件和已学知识,逐步缩小题设和结论间的差异,运用数学思想和方法分析、解决问题,开拓学生的思维空间,优化解题策略,提高学生的.解题能力。若学生能在解决问题的过程中充分发挥数学思想方法的解题功能,不仅可少走弯路,而且还可大大提高学生的数学能力与综合素质。若教师在探索问题的过程中充分体现学生的自主性和合作性,更能激发学生的求知兴趣,使学生在知识学习的同时,感受和领会到数学思想方法的魅力。

  三、在教与学中不断地使数学知识与数学思想方法整合,优化学生的思维品质,提高学生解决问题的能力。

  作为教师,我们首先弄清楚教材中所反映的数学思想方法以及它与数学相关知识之间的联系,并适时作出归纳和概括。另外数学知识和数学思想方法都具有系统性,对它们的学习和渗透是一个循序渐进的过程。在复习时教师可以有目的地对初中数学常用的数学思想方法结合基础知识给学生设计专题练习,进一步完善学生的认知结构,提高学生的数学能力。

  比如:在解方程中,三元、二元化为一元,分式化为整式;在几何中,将复杂图形化为简单图形……在教学中重视数学知识与数学思想方法的整合,可以优化学生思维品质,提高能力。

  总之,任何数学的活动离不开正确的数学思想方法的引领,学生只有掌握了科学的数学思想方法,才有可能找到打开数学殿堂之门的金钥匙。我们在教学中应关注学生数学素养的发展,充分体现新课改理念,注重数学基础知识和重要的数学思想方法的教学,关注学生获取数学知识的思维方法和探究过程,为学生的全面可持续发展提供可靠保证。

的数学思想方法12

  之前一提到数学思想方法,总是感觉似乎知道一些,想过应用它来指导自己的教学,但是自身对数学思想方法的理解不深透,另外又觉得数学思想方法的渗透教学在课堂教学中短时期难以见成效。所以,本人的教学现状中对数学思想渗透的深度远远不够。

  而读了《小学数学与数学思想方法》这本书,王永春老师对数学各类思想方法的梳理和对新教材思想方法的解读,让我对新课标的新理念有了更深一层的理解,对小学数学思想方法的内涵有了较为深刻的认识,明确了教材使用和课堂环节中的渗透策略。

  《小学数学与数学思想方法》首先对数学数学思想方法的'概念、对小学数学教学的意义、对小学数学进行教学的可行性与方法做了简介。其次,梳理了与抽象有关的数学思想:包括抽象思想、符号化思想、分类思想、集合思想、变中有不变思想、有限与无限思想;与推理有关的数学思想:包括归纳思想、类比思想、演绎思想、转化思想、数形结合思想、几何变换思想、极限思想、代换思想;与模型有关的数学思想包括:模型思想、方程思想、函数思想、优化思想、统计思想、随机思想;其他数学思想方法包括:数学美思想、分析法和综合法、反证法、假设法、穷举法、数学思想方法的综合应用。最后,对小学数学1-6年级共十二册教材中数学思想方法案例进行了解读。

  经过研读我发现,数学教材的教学内容始终反映着数学知识和数学思想方法这两方面,数学教材的每一章、每一节乃至每一道题,都体现着这两者的有机结合,数学思想方法有助于数学知识的理解和掌握。如本人执教的三年级下册第八单元搭配,就突出体现了分类思想、符号化思想。第一课时,我让学生体会解决排列组合问题时,就用到了分类讨论的方法有序全面的解决问题。如在用数字0、1、3、5组成没有重复数字的两位数时,多数学生没有分类有序思考,而是比较杂乱地写了组成的两位数,只有少数学生有序地书写。当我让几个学生把他们的方法展示在黑板上,引导学生交流比较后,发现,有学生漏写,有孩子写重复,其中一个孩子书写时分成三类:十位上是1的是10、13、15,十位上是3的有30、31、35,十位上是5的有50、51、53,保证有序全面地排列出来,肯定了有序思考的重要性。再次放手让学生进行组数是,半数以上的学生能又对又快地进行分类有序排列了。第二课时搭配衣服,两件不同的上衣搭配三条不同的裤子,一次各选一件,有多少种搭法,学生已经有了分类的意识,如何才能高效地解决问题呢?这时我们需要将形象的东西进行符号化,可以将衣服用几何图表示,可以用字母表示,也可以绘图表示。也有孩子用数字来表示,然后进行连线搭配,这样保证快速有效地解决问题。

  由此看来,数学思想方法的渗透与运用对于数学问题的解决有十分重要的意义。在教学中不能只注重数学知识的教学,忽视数学思想方法的教学。两条线应在课堂教学中并进,无形的数学思想将有形的数学知识贯穿始终,使教学达到事半功倍。

  但是任何一种数学思想方法的学习和掌握,绝非一朝一夕的事,它需要有目的、有意识地培养,需要经历渗透、反复、不断深化的过程。只要我们在教学中对常用数学方法和重要的数学思想引起重视,大胆实践,持之以恒,有意识地运用一些数学思想方法去解决问题,学生对数学思想方法的认识才会日趋成熟,学生的数学学习才会提高到一个新的层次。

的数学思想方法13

  如何掌握数学思想方法

  数学思想方法是解决数学问题的灵魂,是形成数学能力、数学意识的桥梁,是灵活运用数学知识、技能的关键。在解数学综合题时,尤其需要用数学思想方法来统帅,去探求解题思路,优化解题过程,验证所得结论。

  在初三这一年的数学学习中,常用的数学方法有:消元法、换元法、配方法、待定系数法、反证法、作图法等;常用的数学思想有:转化思想,函数与方程思想、数形结合思想、分类讨论思想。

  转化思想就是把待解决或难解决的问题,通过某种转化手段,使它转化成已经解决或比较容易解决的问题,从而求得原问题的解答。转化思想是一种最基本的数学思想,如在运用换元法解方程时,就是通过“换元”这个手段,把分式方程转化为整式方程,把高次方程转化为低次方程,总之把结构复杂的方程化为结构简单的方程。学习和掌握转化思想有利于我们从更高的层次去揭示、把握数学知识、方法之间的内在联系,树立辩证的观点,提高分析问题和解决问题的能力。

  函数思想就是用运动变化的观点,分析和研究具体问题中的数量关系,用函数的形式,把这种数量关系表示出来并加以研究,从而使问题得到解决。

  方程思想,就是从分析问题的数量关系入手,通过设定未知数,把问题中的已知量与未知量的数量关系,转化为方程或方程组,然后利用方程的理论和方法,使问题得到解决。方程思想在解题中有着广泛的应用,解题时要善于从题目中挖掘等量关系,能够根据题目的特点选择恰当的未知数,正确列出方程或方程组。

  数形结合思想就是把问题中的数量关系和几何图形结合起来,使“数”与“形”相互转化,达到抽象思维与形象思维的结合,从而使问题得以化难为易。具体来说,就是把数量关系的问题,转化为图形问题,利用图形的性质得出结论,再回到数量关系上对问题做出回答;反过来,把图形问题转化成一个数量关系问题,经过计算或推论得出结论再回到图形上对问题做出回答,这是解决数学问题常用的一种方法。

  分类讨论思想是根据所研究对象的差异,将其划分成不同的种类,分别加以研究,从而分解矛盾,化整为零,化一般为特殊,变抽象为具体,然后再一一加以解决。分类依赖于标准的确定,不同的标准会有不同的分类方式。

  总之,数学思想方法是分析解决数学问题的灵魂,也是训练提高数学能力的关键,更是由知识型学习转向能力型学习的标志。

  提高数学能力。

  数学能力的提高,是我们数学学习的'主要目的,能力培养是目前中学数学教育中倍受关注的问题,因此能力评价也就成为数学考查中的热点。

  (1)熟练准确的计算能力

  数式运算、方程的解法、几何量的计算,这些都是初中数学重点解决的问题,应该做到准确迅速。

  (2)严密有序的分析、推理能力

  推理、论证体现的是逻辑思维能力,几何问题较多。提高这一能力,应从以下几个方面着手:

  (ⅰ)认清问题中的条件、结论,特别要注意隐含条件;

  (ⅱ)能正确地画出图形;

  (ⅲ)论证要做到步步有依据;

  (ⅳ)学会执果索因的分析方法。

  (3)直观形象的数形结合能力

  “数”和“形”是数学中两个最基本的概念,研究数学问题时,一定要学会利用数形结合的数学思想方法。

  (4)快速高效的阅读能力

  初三数学中可阅读的内容很多,平时学习中要尽可能多地去读书,通过课内、外的阅读,既可以提高兴趣、帮助理解,同时也培养了阅读能力。如果不注意提高阅读能力,那么应对阅读量较大的考题或热点阅读理解型题目就会有些力不从心了。

  (5)观察、发现、创新的探索能力

  数学教育和素质教育所提倡的“过程教学”中的“过程”指的是数学概念、公式、定理、法则的提出过程、知识的形成发展过程、解题思路的探索过程、解题方法和规律的概括过程。只有在平时的学习中注意了这些“过程”才能提高自己独立解决问题、自主获取知识,不断探索创新的能力。

  注重实际应用。

  利用所学数学知识去探求新知识领域,去研究解决实际问题是数学学习的归宿。加强数学与实际的联系是素质教育的要求。解应用问题的关键是转化,即将实际应用问题转化成数学模型,再利用数学知识去解决问题,从而不断提高自己用数学的意识解决实际问题的能力。最后要强调的是:有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学习数学的重要方式。我们应该在这样的学习过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。

的数学思想方法14

  1、函数与方程思想

  (1)函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其他内容时,起着重要作用

  (2)方程思想是解决各类计算问题的基本思想,是运算能力的基础

  高考把函数与方程思想作为七种重要思想方法重点来考查

  2、数形结合思想:

  (1)数学研究的对象是数量关系和空间形式,即数与形两个方面

  (2)在一维空间,实数与数轴上的点建立一一对应关系

  在二维空间,实数对与坐标平面上的点建立一一对应关系

  数形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化

  3、分类与整合思想

  (1)分类是自然科学乃至社会科学研究中的`基本逻辑方法

  (2)从具体出发,选取适当的分类标准

  (3)划分只是手段,分类研究才是目的

  (4)有分有合,先分后合,是分类整合思想的本质属性

  (5)含字母参数数学问题进行分类与整合的研究,重点考查学生思维严谨性与周密性

  4、化归与转化思想

  (1)将复杂问题化归为简单问题,将较难问题化为较易问题,将未解决问题化归为已解决问题

  (2)灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法

  (3)高考重视常用变换方法:一般与特殊的转化、繁与简的转化、构造转化、命题的等价转化

  5、特殊与一般思想

  (1)通过对个例认识与研究,形成对事物的认识

  (2)由浅入深,由现象到本质、由局部到整体、由实践到理论

  (3)由特殊到一般,再由一般到特殊的反复认识过程

  (4)构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程

  (5)高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向

  6、有限与无限的思想:

  (1)把对无限的研究转化为对有限的研究,是解决无限问题的必经之路

  (2)积累的解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向

  (3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是先进行有限次分割,再求和求极限,是典型的有限与无限数学思想的应用

  7、或然与必然的思想:

  (1)随机现象两个最基本的特征,一是结果的随机性,二是频率的稳定性

  (2)偶然中找必然,再用必然规律解决偶然

  (3)等可能性事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验、随机事件的分布列、数学期望是考查的重点

的数学思想方法15

  一、转变教学观念,重视数学思想方法的挖掘

  数学教学中,概念、法则、公式等知识都会在教材中有明显的体现,而思想方法一般都隐含在数学知识体系里,老师很多时候在教学中只是注重于知识点的讲解,而忽略了能力的加强。所以,老师要更新教学理念,一定要把思想方法的训练融入整个教学之中。比如,在进行“圆的概念”教学的时候,我们在教学的过程中就要培养学生抽象的思维能力,教学中把抽象的圆的概念变为图形展示出来。在学生的头脑里建立圆的表象。在表象的基础上,我们可以对圆的半径、直径进行讲解,让学生对圆有一个更加深层次的认识。我们可以利用圆的各种表象特点,对其本质进行分析,抽象概括用文字语言表达圆的概念,把与圆相关的概念进行符号化,这样的数学教学过程就会符合学生由感性认识到理性认识再到概念认知的这一规律,让学生在这个过程中体会到老师的整体思路,加以学习,通过材料之间的对比,我们可以对空间形式进行抽象的概括,这样可以对数学概念进行形式化的展示。

  二、进行几种数学方法的引入

  在小学教学阶段,数学思想渗透的方法常用的有直观法、形象法。直观法就是把一些抽象的数学思维转变为学生容易感知的具体例题,让学生能够看得见,我们可以利用生动有趣的图画来吸引学生的注意力,这样可以给学生留下鲜明的印象。问题法就是在老师的启发下,老师在进行问题探究的过程中,通过回顾以及逐步对数学问题进行领悟,加深解题的方法和技巧。老师可以通过几个途径进行渗透,在知识的形成过程中进行方法的渗透,比如在进行概念的理解和理论的推导过程中,可以对学生的数学思维进行训练,培养学生的思维能力。在问题解决的过程中进行这种思维活动的渗透,比如,我们可以开展逆向思维,通过答案和结论来进行概念的推导,都可以向学生进行逆向思维活动的渗透,通过逆向思维、图表等一系列的方法,让学生了解“倒过来想”这种思维方式的奥秘所在。在复习小结的时候进行这种思维方法的运用,可以进行横向和纵向思维的延伸,也可以通过已经知道的知识来进行相关知识的推导和延伸,比如,在进行圆的面积的学习中,我们在结束课程以后,可以进行多边形面积的推导。在潜意识里培养学生的转化意识,让学生的思路更加开阔。

  三、开展数学讲座的课外活动

  数学讲座是一种数学课外活动的开展,在进行讲座的过程中学生脱离了传统课堂拘束的环境,可以用一种轻松的心态来进行学习。老师在进行讲座的时候,可以在轻松的氛围当中来给学生渗透思维方法,对教学思路进行一个系统的`概述,也可以进行同学间的经验交流,因为老师的知识积累也不是一成不变的,要随着时代的发展向前推进,符合现代学生的成长要求,这就要求老师多跟学生进行交流,了解学生的想法,这样在进行思维渗透的时候才能起到很好的效果,在讲座的过程中通过方法的交流和老师系统方法的讲解给整个数学学习带来无限的生机,一改往日沉闷的数学学习方式。

  总之,数学思想方法的学习是一项系统化的工程,会受到诸多因素的影响和制约,所以小学数学老师要注重对方法的研究及渗透,来探讨教学规律,适应学生的需求。方法的渗透和学习是一个循环往复的过程,同时有几种方法交织在一起,老师的教学方法往往起到很重要的作用。

【的数学思想方】相关文章:

方儿茶的功效09-07

对承办方的感谢05-10

郑州方特作文12-07

方特之旅作文12-09

方特游作文09-18

方特之旅作文09-11

一方水土,一方文化作文(精选15篇)12-12

[优选]方特之旅作文01-11

宁波方特之旅作文09-13