数学小故事精品[15篇]
数学小故事1
1、 安顺序排列
![数学小故事精品[15篇]](/pic/00/cafdd1a708_5fbf7f093241d.jpg)
小花猫、大公鸡和山羊是好朋友,他们虽然年龄都不相同,但爱好却很相似,正如他们对外夸口说的是忘年交。
一天,大象伯伯看到他们三个正在一起讲故事便向前问道:你们三个究竟谁最大?谁最小?山羊便幽默的说:我的年龄乘以11/12,公鸡的年龄乘以15/15,小花的年龄乘以10/3,这样算出来的.年龄就一样大了。你能把我们的年龄大小依次排列起来吗?
大象伯伯可弄糊涂了,同学们,帮大象伯伯找出答案吧!
2、谁先到达?
兵兵和群群都十分爱好骑车旅游。趁暑假还没有结束,两人又制定了一个旅游计划:决定骑车到附近的云天湖去看看夏日的茶山。
这天一早,兵兵和群群同时从村里出发去云天湖茶场。兵兵始终匀速前进。而群群却不同,他在前进1/4的路程,速度是兵兵的1.5倍;在后3/4路程,速度是兵兵的15/16。结果两人一前一后到达目的地。那么究竟是谁先到的呢?请说出理由。
数学小故事2
趣味数学小故事”0”、”1”之争
在神秘的数学王国里,胖子“0”与瘦子“1”这两个“小有名气”的数字,常常为了谁重要而争执不休。瞧!今天,这两个小冤家狭路相逢,彼此之间又展开了一场舌战。
瘦子“1”抢先发言:“哼!胖胖的‘0’,你有什么了不起?就像100,如果没有我这个瘦子‘1’,你这两个胖‘0’有什么用?”
胖子“0”不服气了:“你也甭在我面前耍威风,想想看,要是没有我,你上哪找其它数来组成100呢?”
“哟!”“1”不甘示弱,“你再神气也不过是表示什么也没有,看!‘1+0’还不等于我本身,你哪点儿派得上用场啦?”
“去!‘1×0’结果也还不是我,你‘1’不也同样没用!”“0”针锋相对。
“你……”“1”顿了顿,随机应变道,“不管怎么说,你‘0’就是表示什么也没有!”
“这就是你见识少了。”“0”不慌不忙地说,“你看,日常生活中,气温0度,难道是没有温度吗?再比如,直尺上没有我作为起点,哪有你‘1’呢?”
“再怎么比,你也只能做中间数或尾数,如1037、1307,永远不能领头。”“1”信心十足地说。听了这话,“0”更显得理直气壮地说:“这可说不定了,如0.1,没有我这个‘0’来占位,你可怎么办?”
眼看着胖子“0”与瘦子“1”争得脸红耳赤,谁也不让谁,一旁观战的其他数字们都十分着急。这时,“9”灵机一动,上前做了个暂停的手势:“你俩都别争了,瞧你们,‘1’、‘0’有哪个数比我大?”“这……”胖子“0”、瘦子“1”哑口无言。这时,“9”才心平气和地说:“‘1’、‘0’,其实,只要你们站在一块,不就比我大了吗?”“1”、“0”面面相觑,半晌才搔搔头笑了。“这才对嘛!团结的力量才是最重要的'!”“9”语重心长地说。
唐僧师徒摘桃子
一天,唐僧命徒弟悟空、八戒、沙僧三人去花果山摘些桃子.不长时间,徒弟三人摘完桃子高高兴兴回来.师父唐僧问:你们每人各摘回多少个桃子?
八戒憨笑着说:师父,我来考考你.我们每人摘的一样多,我筐里的桃子不到100个,如果3个3个地数,数到最后还剩1个.你算算,我们每人摘了多少个?
沙僧神秘地说:师父,我也来考考你.我筐里的桃子,如果4个4个地数,数到最后还剩1个.你算算,我们每人摘了多少个?
悟空笑眯眯地说:师父,我也来考考你.我筐里的桃子,如果5个5个地数,数到最后还剩1个.你算算,我们每人摘多少个?
唐僧很快说出他们每人摘桃子的个数.你知道他们
答案是:61个,自己计算吧
数学小故事3
马克和欧拉是一对好朋友,他们一起进入数学岛体验生活。
“咕噜……”欧拉:“什么声音?”马克指着自己的肚子笑道:“它向我提意见了。”马克这么一说,欧拉也感到自己有些饿了,欧拉:“听说数学岛里吃饭是免费的,我们今天去吃顿好的!”
他俩去了好几家饭店,可是都因为没能回答出问题而被赶了出来,沮丧的欧拉说:“早知道数学岛生存这么难,我就不来了,真向往家里衣食无忧的生活啊!要不我们去救助站喝稀粥?”马克立刻反对道:“那是愚蠢人去的地方,饿死了我也不去!我们再到其他地方试试吧。”
“包子!刚出炉的包子!”马克:“我们去包子铺看看吧,也许那里的题目会简单些!”他俩快步来到包子铺前。
一看:好家伙,这蒸包子的笼屉就有八层,从上往下,一层比一层大。欧拉急不可耐的说:“我们要吃包子!”老板说:“欢迎!欢迎!你俩是今天包子铺的第四批客人,第一批人拿走了全部包子的`一半,后来每批人都拿走了剩下包子的一半,现在就请算算你们能拿走多少个包子吧!”
欧拉高兴的说:“快告诉我们一共有多少个包子?”老板好像没有听到似的给他们介绍起包子来:“第一笼我蒸了2个豆沙包、第二笼蒸了6个青菜包、第三笼蒸了10个萝卜包、第四笼、第五笼、第六笼、第七笼我忘记了,最后一笼我蒸了30个肉包。”说完后就不再理他们了。
欧拉着急地说:“不知道蒸了多少,那我们怎么算出一共有多少个包子呀?”
细心的马克仔细想了一下,微笑着对老板说道:“那请给我们拿8个包子吧!”
老板听后立马拿出了八个热腾腾的包子,微笑的说道:“欢迎下次再来!”
欧拉疑惑的问道:“他没有告诉我们一共有多少包子,你是怎么算出来的?”
马克笑道:“老板在介绍包子时,其实就告诉了我们他笼屉里分别蒸了:2、6、10……30个包子,一共有八层笼屉,已经告诉了我们四层的数量,这是个找规律题,想想每笼差4个,算出来一共有128个包子,第一批人拿走了128个包子的一半也就是64个,还剩64个,第二批人拿了32个,还剩32个,第三批人拿了16个,还剩16个,我们拿一半正好是8个包子。”
饿极了的欧拉一边吃着包子,一边竖起大拇指赞扬道:“你真棒!马克。”
马克一把夺过欧拉手中的包子,说道:“看来想在数学岛生存,也不是很难啊!”
阅读启发:做数学不仅要有聪明的脑袋,更得有细致的心,只要我们用心去对待,动动脑筋,就会发现其实数学没有我们想像的那么难。
数学小故事4
1、蒲丰试验
一天,法国数学家蒲丰请许多朋友到家里,做了一次试验。蒲丰在桌子上铺好一张大白纸,白纸上画满了等距离的平行线,他又拿出很多等长的小针,小针的长度都是平行线的一半。蒲丰说:“请大家把这些小针往这张白纸上随便仍吧!”客人们按他说的做了。
蒲丰的统计结果是:大家共掷2212次,其中小针与纸上平行线相交704次,2210÷704≈。蒲丰说:“这个数是π的近似值。每次都会得到圆周率的近似值,而且投掷的次数越多,求出的圆周率近似值越精确。”这就是著名的“蒲丰试验”。
2、数学魔术家
1981年的一个夏日,在印度举行了一场心算比赛。表演者是印度的`一位37岁的妇女,她的名字叫沙贡塔娜。当天,她要以惊人的心算能力,与一台先进的电子计算机展开竞赛。
工作人员写出一个201位的大数,让求这个数的23次方根。运算结果,沙贡塔娜只用了50秒钟就向观众报出了正确的答案。而计算机为了得出同样的答数,必须输入两万条指令,再进行计算,花费的时间比沙贡塔娜要多得多。
这一奇闻,在国际上引起了轰动,沙贡塔娜被称为“数学魔术家”。
3、八岁的高斯发现了数学定理
德国著名大科学家高斯(1777~1855)出生在一个贫穷的家庭。高斯在还不会讲话就自己学计算,在三岁时有一天晚上他看着父亲在算工钱时,还纠正父亲计算的错误。
长大后他成为当代最杰出的天文学家、数学家。他在物理的电磁学方面有一些贡献,现在电磁学的一个单位就是用他的名字命名。数学家们则称呼他为“数学王子”。
他八岁时进入乡村小学读书。教数学的老师是一个从城里来的人,觉得在一个穷乡僻壤教几个小猢狲读书,真是大材小用。而他又有些偏见:穷人的孩子天生都是笨蛋,教这些蠢笨的孩子念书不必认真,如果有机会还应该处罚他们,使自己在这枯燥的生活里添一些乐趣。
这一天正是数学教师情绪低落的一天。同学们看到老师那抑郁的脸孔,心里畏缩起来,知道老师又会在今天捉这些学生处罚了。
“你们今天替我算从1加2加3一直到100的和。谁算不出来就罚他不能回家吃午饭。”老师讲了这句话后就一言不发的拿起一本小说坐在椅子上看去了。
教室里的小朋友们拿起石板开始计算:“1加2等于3,3加3等于6,6加4等于10……”一些小朋友加到一个数后就擦掉石板上的结果,再加下去,数越来越大,很不好算。有些孩子的小脸孔涨红了,有些手心、额上渗出了汗来。
还不到半个小时,小高斯拿起了他的石板走上前去。“老师,答案是不是这样?”
老师头也不抬,挥着那肥厚的手,说:“去,回去再算!错了。”他想不可能这么快就会有答案了。
可是高斯却站着不动,把石板伸向老师面前:“老师!我想这个答案是对的。”
数学老师本来想怒吼起来,可是一看石板上整整齐齐写了这样的数:5050,他惊奇起来,因为他自己曾经算过,得到的数也是5050,这个8岁的小鬼怎么这样快就得到了这个数值呢?
高斯解释他发现的一个方法,这个方法就是古时希腊人和中国人用来计算级数1+2+3+…+n的方法。高斯的发现使老师觉得羞愧,觉得自己以前目空一切和轻视穷人家的孩子的观点是不对的。他以后也认真教起书来,并且还常从城里买些数学书自己进修并借给高斯看。在他的鼓励下,高斯以后便在数学上作了一些重要的研究了。
数学小故事5
自从人类产生起,我们的祖先为了自身的生存和社会的发展,在劳动中创造了语言;为了计数,表示多少个劳动产品,又在漫长的社会发展中发明了数字,他们根据人的左右耳,对称的眼睛和一双勤劳的手,两只不畏严寒的足,抽象出了这个隐藏在万事万物背后的特殊数字—“2”。其实他们哪里知道这只是“2”的初次显圣,随着社会的加速发展,它那神奇而特异的功能越来越显示出巨大的威力。看起来极为变通而简单,却包含着无穷无尽的奥妙。
今天,让我们揭开它那神奇的面纱,看看它的真实面目。二千多年以前,我国劳动人民为了研究自然变化的规律,便采用了天干,地支,“2”种顺次成双成对相结合的方法记载年和日,它以六十年(或日)为一个周期。在自然现象中,天与地一对,阴与阳成双,还有风与雨,雷与电,高与低,长与短,宽与窄,深与浅,大与小,多与少,轻与重,无生命物质与有生命物质,植物与动物等等,它们都是“2”在不同现象中的化身,也构成了对称式的事物的性质进行比较的不同方式。
在空间中,过两个定点只能确定唯一的一条直线;同一平面内,两条直线只有两种位置关系,它们或者平行或者相交;平行给人以平稳,宁静,宽广等美感,相交的两条直线中,如果规定了各自的正方向,原点及各自的单位,则它是一个二维射影坐标系,它能使抽象的射影变换具体化,直观化;如果这两条相交线互相垂直,正方向,原点不变,两条直线上的单位长度相同,那么这两条相交线就摇身一变成了特殊的二维射影坐标系,即二维欧氏空间—笛卡尔坐标系,这是一个多么神圣的十字架啊!它使人类变得越来越聪明,而不像基督教中那种迂腐的十字架,使人们走向岐途与无知。它巧妙地使平面点集与有序实数对建立了一一对应关系,更使人意想不到的是为代数与几何搭起了鹊桥,使解析几何得以产生和发展,又可建立复平面,使有关的向量的运算变得简单而易行,也为数学的`统一美增添了新的风采。
作为自然数中的一个成员—“2”,在数学天地里都有着别具一格的优点和令人难以捉摸的规律。它是自然数“1”的唯一邻居,后继数是第一个奇素数“3”,后继数的后继数“4”又是第一个不是素数的偶数,而“2”却是一个唯一的既是偶数又是质数的自然数。二加二,二乘以二,二的二次方,神斧天工竟有共同的结果4;一个实数的平方总是非负数,一个正数的平方根总是绝对值相等,符号相反的一对数;两个正数的和除以2称作算术平均数;两个正数的积的平方根称为几何平均数;一个一元二次方程总是有2个根,或实或虚,或等或不等,可由判别式判断。在这里都有“2”的神秘影子,它起着某种奇妙的作用,如果成对的自然数的积顺次构成的列1×2,2×3,3×4,……,(n—1)n,……,变成由每一项的倒数构成的倒数列1/1×2,1/2×3,1/3×4,1/(n—1)n,……,那么要求它的前几项和似乎很困难,但是如果发现每项都有一个共同点,即1/n(n—1)=1/(n—1)—1/n时,那就是每项可以写成分为两个数的倒数之差,这样,前几项和的求法就变得非常简单,其结果为Sn=1—1/n,在这里,“2”既是秩序美的潜因,又起化繁为简的作用。
在现代社会中,我们采用十进制进行计量,采用六十进制计时,而谁又能想到最有发展前途的是二进制,它只有两个元素0,1,它的四则运算简单而明了,如1+1=10,它与八进制、十进制、十六进制互化极其方便。数理逻辑就是在二进制的基础上产生的。逻辑式的化简,解逻辑方程都离不开二进制作向导,如果说没有二进制,那么电子计算机至少不会像今天这样飞速发展,信息时代也不可能在当今的社会中实现,卫星上天也是一句空话。可见“2”的某些规律给人们带来了多么有意义的启示和灵感,更为数学迷宫笼罩了一层神妙而朦胧的面纱。
“2”在代数的世界里留下了神奇的足迹。有一位数学家风趣地说“像评演员一样,如果在中学数学里评最佳定理,我就选勾股定理,二次三项式根的定理和棣莫佛定理。”在这里二次三项式,勾股定理,棣莫佛定理都显现着2的光彩。勾股定理的整数解是最为独特的、典型的。因为对于“an+bn=cn的不定方程,当n≥3时,找不到任何一组整数解,在这里2是神秘的荣幸者。棣莫佛定理是复数知识中最重要的定理,这里实部、虚部,复平面上的数组,都蕴含着“2”的本质。二次三项式根的定理确实是一个引人注目,运用最多的定理,即就是二次三项式以及与之有关联的一元二次函数,一元二次方程,一元二次不等式,也是整个中学数学的重要核心内容之一,各类考试无把它作为命题的重要内容。我国数学家杨乐,曾在一次讲话中专门论述了为什么二次三项式的内容受到高考命题的青睐,可见二次三项式及其影响极为深远,人们对其爱好不同寻常,进而人们对“2”产生了更加神秘而奇特的想象。
二元二次方程,几乎占据了中学解析几何中大部分内容,圆、椭圆、双曲线、抛物线等,它们的方程是二次方程,它们通称为二次曲线,这些曲线都是简洁的二元二次方程。二次曲线漂亮优美,二元二次方程对称优美。而其中的“2”则更为蕴意深刻,奇美无比了。
在数学王国里,二项式定理是一个完美的定理。我们说以“2”成双,成双为对,成对才能闪耀对称的光辉,而二项式定理的展开式就显现出了奇美对称的特点。从杨辉三角上看就会显明地看到这种美的形式的壮丽,然而,“一分为二”是一种认识事物的观点,而一个线段可以一分为二,我国古代就有人研究数列的极限问题,最典型的问题就是“一日之棰,日取其半,万世不揭”。
在各门学科中,许多问题常归结为“二”个方面或两个问题,而且多数都在某种意义上具有对立而又统一的关系。一方面的存在而往往是另一方面存在的前提。离开了其中一方,另一方就无从谈起。在哲学上,对立统一规律是宇宙中最为普通的规律,它正是“二”和“一”的深奥组合,它囊括万物,包罗万象,是照耀人类社会不断发展的一盏明灯;量变与质变又是事物发展变化的基本规律;事物总是在矛盾中发展的,它有共性与个性,主要与次要之分;同一矛盾也有主要方面和次要方面之分;感性认识与理性认识都有是认识的两个深浅不同的阶段;在事物发展变化中,内因起着决定作用,外因通过内因起作用;主观与客观也是一对矛盾关系。美学上存在着真与假、善与恶、美与丑,总是有着对立面的两个方面。
物理学上有宏观与微观、引力与斥力、作用与反作用力、电场与磁场、正电荷与负电荷之分,伟大的物理学家爱因斯坦的相对论也有狭义与广义之分。医学上也有中医与西医,内科与外科之分,生物学有同化与异化之分,化学上有有机物与无机物、金属与非金属、化合与分解、树枝的聚合与石油的裂化等。在语言文学上则更是不胜枚举,就拿方位词来说有上下、左右、前后、内外之分。这些事物中,都无不存在两个方面,可见2处处存在,时时出现,“2”以某种天使般的能耐使事物显示出对称统一、和谐美的特征。
“2”给了我们许许多多的深刻启示,使人类不断开创了美好的世界,然而它仍然是神秘的,也许它还会有更多的严谨和均衡的内在美尚未被人发现,这就给我们留下了探索神秘的完美的目标和追求的信心。
数学小故事6
提到数学,不少人眉头紧皱。然而,只要融入日常,你会惊喜地发现,数学无处不在呢!
陈景润、华罗庚、苏步青等国宝级数学家,为我们树立起骄傲的榜样。在他们的传奇人生中,蕴藏着诸多妙趣横生的数学故事。比如,苏步青爷爷遛狗的一次经历:他与友人相逢,开心畅聊,而小狗在两人间来回穿梭。眼尖的.同学一定发现了其中的数学秘密——两人间距500米,朋友步行速度为3米/秒,爷爷步行速度为2米/秒,小狗狂奔的速度则为6米/秒。那么,当爷孙俩会合时,这只小狗跑了多少米呢?
乍一看,这道题目似乎复杂难懂。别急,深思熟虑后你会发现,解决这个问题并不困难。因为三人行走的时间相同,所以只需计算出这个时间,就能得出小狗跑过的距离。答案呼之欲出:500 ÷(3 + 2)= 100秒,接着用100 × 6 = 600米,小狗的行程就算出来了。看吧,数学其实简单有趣,并非想象中的那样高深莫测。
生活中的数学实例不计其数,只需一双善于发现的眼睛。只要你认为数学有趣,亲自去探索奥秘,就能收获满满的快乐。
数学小故事7
数学家杨辉的小故事
说起杨辉的这一成就,还得从偶然的一件小事说起。
一天,台州府的地方官杨辉出外巡游,路上,前面铜锣开道,后面衙役殿后,中间,大轿抬起,好不威风。迷人的春天慷慨地散布着芳香的气息,带来了生活的欢乐和幸福。杜鹃隐藏在芒果树的枝头。用它那圆润、甜蜜、动人心弦的鸣啭来唤醒人们的希望。成群的画眉鸟像迎亲似的蹲在树的枝丫上,发出婉丽的啼声。楝树、花梨树和栗树都仿佛被自身的芬芳熏醉了。杨辉撩起轿帘,看那杂花生树,飞鸟穿林,真乃春色怡人淡复浓,唤侣黄鹂弄晓风。更是一年好景,旖旎风光。走着、走着,只见开道的镗锣停了下来,前面传来孩童的大声喊叫声,接着是衙役恶狠狠的训斥声。杨辉忙问怎么回事,差人来报:“孩童不让过,说等他把题目算完后才让走,要不就绕道。”杨辉一看来了兴趣,连忙下轿抬步,来到前面。衙役急忙说:“是不是把这孩童哄走?”杨辉摸着孩童头说:“为何不让本官从此处经过?”孩童答道:“不是不让经过,我是怕你们把我的算式踩掉,我又想不起来了。”“什么算式?”“就是把1到9的数字分三行排列,不论直着加,横着加,还是斜着加,结果都是等于15。我们先生让下午一定要把这道题做好。我正算到关键之处。”杨辉连忙蹲下身,仔细地看那孩童的算式,觉得这个数字,从哪见过,仔细一想,原来是西汉学者戴德编纂的《大戴礼》书中所写的文章中提及的。杨辉和孩童俩人连忙一起算了起来,直到天已过午,俩人才舒了一口气,结果出来了,他们又验算了一下,觉得结果全是15,这才站了起来。我们把算式摆出来:(在左边的方块中,无论你横、竖、斜着加结果都是15。请试一下)孩童望着这位慈祥和善的地方官说:“耽搁你的时间了,到我家吃饭吧!”杨辉一听,说:“好,好,下午我也去见见你先生。”孩童望着杨辉,泪眼汪汪,杨辉心想,这里肯定有什么蹊跷,温和地问道:“到底是怎么回事?”孩童这才一五一十把原因道出:原来这孩童并未上学,家中穷得连饭都吃不饱,哪有钱读书。而这孩童给地主家放牛,每到学生上学时,他就偷偷地躲在学生的窗下偷听,今天上午先生出了这道题,这孩童用心自学,终于把它解决了。杨辉听到此,感动万分,一个小小的孩童,竟有这番苦心,实在不易。便对孩童说:“这是10两银子,你拿回家去吧。下午你到学校去,我在那儿等你。”下午,杨辉带着孩童找到先生,把这孩童的情况向先生说了一遍,又掏出银两,给孩童补了名额,孩童一家感激不尽。
自此,这孩童方才有了真正的先生。教书先生对杨辉的清廉为人非常敬佩,于是俩人谈论起数学。杨辉说道:“方才我和孩童做的那道题好像是《大戴礼》书中的?”那先生笑着说:“是啊,《大戴礼》虽然是一部记载各种礼仪制度的文集,但其中也包含着一定的数学知识。方才你说的题目,就是我给孩子们出的数学游戏题。”教书先生看到杨辉疑惑的神情,又说道:“南北朝的甄鸾在《数术记遗》一书中就写过:“九宫者,二四为肩,六八为足,左三右七,戴九履一,五居中央。”杨辉默念一遍,发现他说的正与上午他和孩童摆的数字一样,便问道:“你可知道这个九宫图是如何造出来的?”教书先生也不知出处。
杨辉回到家中,反复琢磨,一有空闲就在桌上摆弄着这些数字,终于发现一条规律。他把这条规律总结成四句话:九子斜排,上下对易,左右相更,四维挺出”。就是说:一开始将九个数字从大到小斜排三行,然后将9和1对换,左边7和右边3对换,最后将位于四角的4、2、6、8分别向外移动,排成纵横三行,就构成了九宫图。下面我们演示一下:(九子斜排)(上下对易,左右相更)(四维挺出)按照类似的规律,杨辉又得到了“花16图”,就是从1到16的数字排列在四行四列的方格中,使每一横行、纵行、斜行四数之和均为34。
后来,杨辉又将散见于前人著作和流传于民间的有关这类问题加以整理,得到了“五五图”、“六六图”、“衍数图”、“易数图”、“九九图”、“百子图”等许多类似的'图。杨辉把这些图总称为纵横图,并于1275年写进自己的数学著作《续古摘奇算法》一书中,并流传后世。纵横图,也叫幻方,它要求把从1到n2个连续的自然数安置在n2个格子理。但长期以来,人们习惯于把它当作纯粹的数学游戏,没有给予应有重视。随着近代组合数学的发展,纵横图显示了越来越强大的生命力,在图论、组合分析、对策论、计算机科学等领域中,找到了用武之地。杨辉可以说是世界上第一个给出了如此丰富的纵横图和讨论了其构成规律的数学家。
杨辉除此成就之外,还有一项重大贡献,就是“杨辉三角”。有一次,杨辉得到一本《黄帝九章算法细草》,这是北宋数家贾宪写的。这里面有不少了不起的成就,如贾宪描画了一张图,叫作“开方作法本源图”。图中的数字排列成一个大三角形,位于两腰上的数字均是1,其余数字则等于它上面两数字之和。从第二行开始,这个大三角形的每行数字,都对应于一组二项展开式的系数,下面试举例说明:在第三行中,1、3、3、1,这4个数字恰好是对应于(X+1)3=X3+3X2+3X+1;再如第四行对应于(X+1)4=X4+4X3+6X2+4X+1。以此类推。杨辉把贾宪的这张画忠实地记录下来,并保存在自己的《详解九章算术》一书中。
后来人们发现,这个大三角形不仅可以用来开方和解方程,而且与组合、高阶等差级数、内插法等数学知识都有密切关系。在西方,直到16世纪才有人在一本书的封面上绘出类似的图形。法国数学家巴斯加在1654年的论文中详细地讨论了这个图形的性质,所以在西方又称“巴斯加三角”。
杨辉除上述成就外,还分别写了《日用算法》、《乘除通变本末》和《田亩比类乘除捷法》等书,这为后世的人们了解当时的数学面貌提供了极为重要的资料。杨辉的几部著作极大地丰富了我国古代数学宝库,为数学科学的发展做出了卓越的贡献,他不愧为“宋元四大家”之一。
数学小故事8
国王做了一顶金王冠,他怀疑工匠用银子偷换了一部分金子,便要阿基米德鉴定它是不是纯金制的,且不能损坏王冠。阿基米德捧着这顶王冠整天苦苦思索,有一天,阿基米德去浴室洗澡,他跨入浴桶,随着身子浸入浴桶,一部分水就从桶边溢出。
阿基米德看到这个现象,头脑中像闪过一道闪电,“我找到了!”。阿基米德拿一块金块和一块重量相等的银块,分别放入一个盛满水的容器中,发现银块排出的水多得多。于是阿基米德拿了与王冠重量相等的金块,放入盛满水的容器里,测出排出的.水量。
再把王冠放入盛满水的容器里,看看排出的水量是否一样,问题就解决了。随着进一步研究,沿用至今的流体力学最重要基石——阿基米德定律诞生了。
数学小故事9
陈景润是一个家喻户晓的数学家,在攻克歌德巴赫猜想方面作出了重大贡献,创立了著名的“陈氏定理”,被成为“数学王子”。但有谁会想到,他的成就源于一个故事,这个故事也是十大经典数学小故事之一。一天,沈元老师在数学课上给大家讲了一故事:“200年前有个法国人发现了一个有趣的现象:6=3+3,8=5+3,10=5+5,12=5+7,28=5+23,100=11+89。每个大于4的偶数都可以表示为两个奇数之和。因为这个结论没有得到证明,所以还是一个猜想。大数学欧拉说过:虽然我不能证明它,但是我确信这个结论是正确的。当时陈景润瞪着眼睛,听得入神。从此,他对这个奇妙问题产生了浓厚的'兴趣。正是这样的数学故事,引发了陈景润的兴趣,引发了他的勤奋,从而引发了一位伟大的数学家。
数学小故事10
在1842年,剑桥数学教授查尔斯巴贝奇在都灵大学做了一场关于他的解析机器(第一台计算机)的设想的讲座。此后,数学家路易吉蒙博将讲座笔记转录为法语。年轻的女伯爵阿达洛夫莱斯被查尔斯惠斯通(巴贝奇的一位朋友)委托把蒙博的笔记翻译成英语。由于其在记录时富有远见的记法,她被公认为世界上第一位程序员。这份笔记在1843年被发表,洛夫莱斯在G部分增加了她个人的笔记,其中列出了一份计算伯努利数的算法。实际上,她利用了巴贝奇的理论机器,将它变成了可计算的现实。阿达洛夫莱斯为那些想要探索计算奥秘的人提供了一条路,并持续地影响着科技的发展。
尽管她们的贡献意义深远,这三位女性数学家的发现却经常被男性数学家的贡献所遮蔽。据20xx年联合国的估计,在世界上男人与女人的数量基本相同(101.8位男性对100位女性)。由此我们受到启发,工作在数学领域的女性应该和这一领域的男性有大致相同的.数量。
我们之所以没能看到这一点,有个很重要的原因,是由于我们错误地认识了女性数学家的历史贡献。考虑到现代社会中科学技术的重要地位,我们认为促进和鼓励更多的女性进入数学领域,在一个文明社会里,是大势所趋的。
数学小故事11
一天,唐僧命徒弟悟空、八戒、沙僧三人去花果山摘些桃子。不长时间,徒弟三人摘完桃子高高兴兴回来。师父唐僧问:你们每人各摘回多少个桃子?
八戒憨笑着说:师父,我来考考你。我们每人摘的一样多,我筐里的桃子不到100个,如果3个3个地数,数到最后还剩1个。你算算,我们每人摘了多少个?
沙僧神秘地说:师父,我也来考考你。我筐里的桃子,如果4个4个地数,数到最后还剩1个。你算算,我们每人摘了多少个?
悟空笑眯眯地说:师父,我也来考考你。我筐里的桃子,如果5个5个地数,数到最后还剩1个。你算算,我们每人摘多少个?
唐僧很快说出他们每人摘桃子的个数。你知道他们每人摘多少个桃子吗?
故事五:给数字一个生命
小朋友们,当你轻轻地打开数学书的时候,是否看到了数字们微笑的脸?咦?数字怎么是活着的呢?当然是活着的喽!他们各有不同的性格。你看,一向认为自己个头最高、腰板总是挺得直直的“1”,是多么傲慢呀。他可以整除所有的`数,但是他除了自身之外却不能被别的数整除,真可谓是“独霸将军”。
但是“2”却很和善,所以他和他的倍数们成了很好的朋友。听说过什么是质数吗?那些家伙在数字界中有点与众不同。他们很固执,相互缠在一起,挂在筛子上怎么都打不散,总是抱成团。怎么样,数字们都拥有不同的个性吧。因此,我们不能忽视他们的生命。据说,数字们也时常组织聚会呢。这种聚会根据不同的目的和时间而定,同样的数字可以参加不同种类的聚会。当听到“自然数集合”时,所有的自然数就会聚集在一起,但是当听到“整数集合”时,刚刚集合在自然数队伍里的数字们就会跟着整数的队伍走。
数学小故事12
8数学家的墓志铭
一些数学家生前献身于数学,死后在他们的墓碑上,刻着代表着他们生平业绩的标志。
古希腊学者阿基米德死于进攻西西里岛的罗马敌兵之手(死前他还在主:“不要弄坏我的圆”。)后,人们为纪念他便在其墓碑上刻上球内切于圆柱的图形,以纪念他发现球的体积和表面积均为其外切圆柱体积和表面积的`三分之二。 德国数学家高斯在他研究发现了正十七边形的尺规作法后,便放弃原来立志学文的打算 而献身于数学,以至在数学上作出许多重大贡献。甚至他在遗嘱中曾建议为他建造正十七边形的棱柱为底座的墓碑。
16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数后35位,后人称之为鲁 道夫数,他死后别人便把这个数刻到他的墓碑上。 瑞士数学家雅谷·伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上 就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”。这是一句既刻划螺线性质又象征他对数学热爱的双关语
数学小故事13
唐僧师徒摘桃子
一天,唐僧命徒弟悟空、八戒、沙僧去花果山摘桃子。不久,徒弟三人摘完桃子高高兴兴地回来了。唐僧问:你们每人各摘回多少个桃子?
八戒憨笑着说:师父,我来考考你。我们每人摘的一样多,我筐里的.桃子不到100个,如果3个3个地数,数到最后还剩1个。你算算,我们每人摘了多少个?
沙僧神秘地说:师父,我也来考考你。我筐里的桃子,如果4个4个地数,数到最后还剩1个。你算算,我们每人摘了多少个?
悟空笑眯眯地说:师父,我也来考考你。我筐里的桃子,如果5个5个地数,数到最后还剩1个。你算算,我们每人摘多少个?
数学小故事14
小猴、小熊、 小狗相约来到街上玩。他们来到超市前一看,一个哈蜜瓜正好30元,于是一人拿10元钱,买了一个瓜。
他们刚走出大门,一位营业员跑出来说:今天我们优惠,只要25元,这是找给你们的5元。小狗说:我们分了这5元钱吧!小熊说:好!可小猴说:这样我们分不完呀!那就一人1元,余下的两块钱再买一包瓜子 。小狗、小熊都说好。
在回来的'路上,小熊说:我们一人花了9元钱,3人就是3乘9等于27元,又买了一包瓜子,一共花了29元,还有一元钱到哪里去了呢?小猴和小狗说:是呀!怎么少了一元钱呢?奇怪?
小朋友们,你们知道这一元钱哪去了吗?
原来,27元里面就含有买瓜子的2元,再加上每人分的一元钱,合起来刚好是30元,一点也没错。
数学小故事15
“问泉哪得清如许,唯有源头活水来”,成绩的取得,不仅要付出辛劳,更多的是对教育教学不断地总结与探索。要利用中午休息和下午没有课的时间给学生补缺补差。在提倡素质教育的今天,学生没有经过筛选,其智商的发展本身就存在着差异,在教学中要理论联系实际,让学生去观察、去思考、去动手操作,培养他们的数学学习兴趣,激发他们的数学学习热情,让他们感觉到生活中处处有数学知识,学习数学知识充满着无穷的乐趣。在平时的的课堂教学中,我的做法是:让平等、民主、合作的师生关系贯穿教育教学的始终。“亲其师,信其道,”只有师生情感融洽,学生才会敢想、敢问、敢说。在我的课堂教学中,我总是微笑的面对学生,从不板着脸上课,更不对学生大声训斥,力求做到尊重每一位学生,平时教学中,尽量用动作去表示,尽量让学生学懂,学透,能够做到举一反三,知一晓十,还要能够用“联想”去学习,例如:在小学三年级的数学课中,出现“分数的初步认识”这部分内容。“分数”对于孩子来讲是刚刚接触的新知识,比较抽象,不容易进行理解,所以要想彻底理解分数的意义是一件不简单的的事。因此。在教学中我特别注意尽可能将抽象内容转化成形象内容,便于他们理解。
在上“分数初步认识”这节课时,我通过大量的实物演示和学生的动手操作,帮助学生理解分母,分子的含义,发现课堂效果还不错。学生都非常感兴趣,积极性也很高。临下课时,我出了一道题:12根小棒,要拿出他的3/4,拿出了多少根?写完后,我想,这道题一定会难住他们的,因为这节课我并没有讲这样的例题。同学们读完题后,教室里立刻安静下来,他们邹着眉头,在努力地思考着…… 我们班的张某某,号称“机灵鬼”拿起笔在纸上画了起来,不一会,12根木棒画完了,接着又将他们平均分了4份,拿出了其中的3份,数了一数,兴奋的喊到:我知道了,我知道了,一共拿出9根木棒。当时我高兴极了,没有想到真的会有学生做出来。我顺势说:“张某某同学真聪明,她通过画图方式把这道题解决了,你们该怎么办?”同学们恍然大悟,纷纷在本上画了起来,不一会我便听到了此起彼伏的回答声:9根 9根……。。黄某某同学在班里是个“快嘴”他站起来说,老师,我明白了,一共有12根木棒,平均分成4份后,取出3份,3份就是9根。我兴奋地鼓起了掌,笑着说,老师没有想到你们表现这么好,没讲的题,你们居然做出来了,太让我意外了。
老师还想出一道更难一点的题,你们有兴趣吗?学生们兴高采烈地说:“有”。于是我写下了这样的'一道题:一张正方形的纸,连续对折一次,二次,三次…。。。,平均得到的份数分别是几份?同学们迅速的撕下一张纸,折成正方形,然后开始对折一次,很快得出了平均份数是2份,又继续对折二次,三次,得出的份数分别是4份,8份,这时,出现了一个问题,由于折纸的次数多,已经没有位置可折了,可黑板上的题明明写着对折四次,五次……平均分的份数是多少?这下同学们可犯愁了,他们皱着眉头望着我,我只是微笑的看着他们,教室里又一次安静下来,突然,我们班的“大高个”何某某兴奋地喊到“老师,我知道了,对折4次,5次……平均份数分别是16份,32份……同学们吃惊地望着他。
“32份,那么多,怎么折出来的啊?”
“当然不是折出来的,而是找规律找出来的”,周某某得意的说。
“啊!我也找到规律了,平均份数分别是前一次份数的2倍,”黄某某高兴地说。
我赶紧不失时机地说:“同学们,你们太可爱了,你们太聪明了,你们说的非常有道理,这节课,你们上的非常成功,非常完美,你们不但理解了分数的意义,还运用了我们以前学过的知识“找规律”,把新旧知识恰到好处的连贯起来,你们不仅可爱,而且有超乎寻常的智慧。你们这节课的表现让老师感到震惊,感到自豪,感到骄傲。老师相信你们在未来遇到难题时有更大的潜力去寻找答案,你们对自己有吗?“有”。同学们洪亮的声音回荡在走廊里。
新理念、新课标、新教材、新课堂,一切都是新的。现在每堂课都是鲜活的,每堂课都有故事。每一个故事的表演者是我的学生和我,其中我的学生是主演,导演有时是我,但更多时候是“真理”与“创新”。学生和我每天演绎着不同的故事,在故事中,我领悟到新课程带给我的启示:教师不能代替学生思考,同时要充分利用好教学中的各种素材,尽可能让学生自己探索、发现数学结论,让学生体验学习和创造的过程,培养学生正确的数学观,激发学生学习数学的兴趣。我越来越喜欢有故事的课堂,也更加热爱这个有故事的职业。
【数学小故事】相关文章:
数学的小故事12-03
数学小故事03-11
数学小故事06-02
关于数学的小故事07-05
【热】数学小故事03-12
(精品)数学的小故事12-03
趣味数学小故事12-18
有趣的数学小故事05-31
趣味数学小故事06-02
数学小故事[热门]06-02